Math 444/539 : Geometric Topology
Problem Set 5

Everyone should do all the problems.

Problems:

1. Define \(f : S^1 \times I \to S^1 \times I \) by \(f(\theta, s) = (\theta + 2\pi s, s) \), so \(f \) restricts to the identity on the two boundary circles of \(S^1 \times I \). Show that \(f \) is homotopic to the identity by a homotopy that is stationary on one of the boundary circles, but not by any homotopy that is stationary on both boundary circles. Hint: consider what \(f \) does to the path \(s \mapsto (\theta_0, s) \) for fixed \(\theta_0 \).

2. (a) Prove that the Borsuk-Ulam theorem does not hold for \(T^2 \). More specifically, find a function \(f : S^1 \times S^1 \to \mathbb{R}^2 \) such that there does not exist a point \((x, y) \in S^1 \times S^1 \) such that \(f(x, y) = f(-x, -y) \).

(b) Recall that we used the Borsuk-Ulam theorem to show that \(S^2 \) cannot be embedded in \(\mathbb{R}^2 \). Prove that an orientable genus \(g \) surface cannot be embedded in \(\mathbb{R}^2 \) for \(g \geq 1 \). Hint: by part a, there is no version of the Borsuk-Ulam theorem available, so you’ll have to try something else. I would suggest assuming that the surface can be embedded, and then using the Jordan curve theorem in a clever way to derive a contradiction.

3. Let \(A_1, A_2, \) and \(A_3 \) be three polyhedra in \(\mathbb{R}^3 \). Use the Borsuk-Ulam theorem to show that there exists a plane \(P \subset \mathbb{R}^2 \) that divides each \(A_i \) into two pieces of equal volume.

4. Show that if \(\phi : \pi_1(S^1, 1) \to \pi_1(S^1, 1) \) is any homomorphism, then there exists some map \(f : S^1 \to S^1 \) such that \(f_* = \phi \). Remark: in particular, \(f(1) = 1 \).

5. Prove that there are infinitely many non-homotopic retractions \(S^1 \vee S^1 \to S^1 \). Remark: we do not yet know the fundamental group of \(S^1 \vee S^1 \) – you are not allowed to read ahead and use that calculation. You must prove every fact you need about the fundamental group of \(S^1 \vee S^1 \) using things covered in the class up to this point.

6. Consider a map \(f : S^1 \to S^1 \). Pick some path \(\gamma \) from \(f(1) \in S^1 \) to \(1 \in S^1 \). We therefore get an induced sequence of maps

\[
\mathbb{Z} = \pi_1(S^1, 1) \xrightarrow{f_*} \pi_1(S^1, f(1)) \xrightarrow{\phi} \pi_1(S^1, 1) = \mathbb{Z}.
\]

which we will denote \(\psi : \mathbb{Z} \to \mathbb{Z} \).

(a) Prove that \(\psi \) is multiplication by some integer \(n \).

(b) Prove that \(n \) is independent of the choice of path \(\gamma \).

This integer \(n \) is known as the degree of \(f \).

7. (a) Prove that if a map \(f : S^1 \to S^1 \) is nonsurjective, then its degree is 0.

(b) Prove that any map \(f : S^1 \to S^1 \) of degree different from 1 has a fixed point.