Math 444/539 : Geometric Topology Problem Set 5

Everyone should do all the problems.

Problems :

- 1. Define $f: S^1 \times I \to S^1 \times I$ by $f(\theta, s) = (\theta + 2\pi s, s)$, so f restricts to the identity on the two boundary circles of $S^1 \times I$. Show that f is homotopic to the identity by a homotopy that is stationary on one of the boundary circles, but not by any homotopy that is stationary on both boundary circles. Hint : consider what f does to the path $s \mapsto (\theta_0, s)$ for fixed θ_0 .
- 2. (a) Prove that the Borsuk-Ulam theorem does not hold for T^2 . More specifically, find a function $f: S^1 \times S^1 \to \mathbb{R}^2$ such that there does not exist a point $(x, y) \in S^1 \times S^1$ such that f(x, y) = f(-x, -y).
 - (b) Recall that we used the Borsuk-Ulam theorem to show that S^2 cannot be embedded in \mathbb{R}^2 . Prove that an orientable genus g surface cannot be embedded in \mathbb{R}^2 for $g \ge 1$. Hint : by part a, there is no version of the Borsuk-Ulam theorem available, so you'll have to try something else. I would suggest assuming that the surface can be embedded, and then using the Jordan curve theorem in a clever way to derive a contradiction.
- 3. Let A_1 , A_2 , and A_3 be three polyhedra in \mathbb{R}^3 . Use the Borsuk-Ulam theorem to show that there exists a plane $P \subset \mathbb{R}^2$ that divides each A_i into two pieces of equal volume.
- 4. Show that if $\phi : \pi_1(S^1, 1) \to \pi_1(S^1, 1)$ is any homomorphism, then there exists some map $f: S^1 \to S^1$ such that $f_* = \phi$. Remark : in particular, f(1) = 1.
- 5. Prove that there are infinitely many non-homotopic retractions $S^1 \vee S^1 \to S^1$. Remark: we do not yet know the fundamental group of $S^1 \vee S^1$ – you are not allowed to read ahead and use that calculation. You must prove every fact you need about the fundamental group of $S^1 \vee S^1$ using things covered in the class up to this point.
- 6. Consider a map $f: S^1 \to S^1$. Pick some path γ from $f(1) \in S^1$ to $1 \in S^1$. We therefore get an induced sequence of maps

$$\mathbb{Z} = \pi_1(S^1, 1) \xrightarrow{f_*} \pi_1(S^1, f(1)) \xrightarrow{\phi_{\gamma}} \pi_1(S^1, 1) = \mathbb{Z}.$$

which we will denote $\psi : \mathbb{Z} \to \mathbb{Z}$.

- (a) Prove that ψ is multiplication by some integer n.
- (b) Prove that n is independent of the choice of path γ .

This integer n is known as the *degree* of f.

- 7. (a) Prove that if a map $f: S^1 \to S^1$ is nonsurjective, then its degree is 0.
 - (b) Prove that any map $f: S^1 \to S^1$ of degree different from 1 has a fixed point.