Thm: A tree T is contractible to any $p \in V(T)$

pf:

\underline{Step 1: T finite}

By induction on $|V(T)|$

- If $|V(T)| = 1$, trivial
- If $|V(T)| > 1 \Rightarrow$ Evolve 1 vertex v_0

WLOG, $v_0 \neq p$

Let $e_v \in E(T)$ be adjacent to v_0

Can contract T to $T' = T \setminus (\text{Int}(e_v) \cup \{v_0\})$

Induction \Rightarrow Can contract T' to p

\underline{Step 2: General T}

If T connected $\Rightarrow \exists F^0: T^{(0)} \times I \to T$ s.t.

$F^0(x_o) = x$, $F^0(x_0) = p$,

$F^0(p_o, t) = p$

Must extend F^0 to $F: T \times I \to T$

Consider $e = e_v \in E(T)$ w/ end points $p_o, p_o \in T^{(0)}$

$e \cong I$, so $\exists (e \times I) = \text{square}$

Define

$F_e^0: (e \times I) \to T$

$F_e^0(x_o, t) = x$, $F_e^0(x_0, t) = p$

$F_e^0(p_o, t) = F^0(p_o, t)$

$F_e^0(p_o, t) = F^0(p_o, t)$

$F_e^0(e \times I)$ compact $\Rightarrow \exists$ finite tree $T^1 \subseteq T \wedge F_e^0(e \times I) \subseteq T^1$
Step 1 \(\Rightarrow \) \(T' \) 1-connected
\[\mathcal{E}(e \in I) \cong S' \], so 1-connectivity implies can extend \(F_e : \mathcal{E}(e \in I) \to T \) to \(F_e : e \times I \to T \)
Define
\[F : T \times I \to T \]
\[F|_{e \times I} = F_e \]
By construction, this is well-defined continuous function with
\[F(x, 0) = x, \ F(x, 1) = \rho, \ F(\rho, t) = \rho \]

Thm: \(X \) connected graph, \(p \in V(X) \)
\[\Rightarrow \Pi_1(X, p) \) free grp

pf:
\[T \subseteq X \) maximal tree
\[\{e_{\alpha}\} \) edges of \(X \) not in \(T \)

Divide \(e_{\alpha} \) into 3 segments:

Set \(f_{\alpha} = e_{\alpha'} U e_{\alpha''} \)
So \(f_{\alpha} \) open in \(e_{\alpha} \)
Define
\[G_\alpha = T \cup e_\alpha \]
\[U_\alpha = T \cup e_\alpha \cup \left(\bigcup_{\beta} U_\beta \right) \]

Facts:

a) \(U_\alpha \) open
b) \(U_\alpha \) def. retracts onto \(G_\alpha \)
c) \(\alpha \neq \beta \Rightarrow U_\alpha \cap U_\beta = T \cup (U_\beta \delta) \), which def retracts onto \(T \)

\[\Rightarrow U_\alpha \cap U_\beta \text{ path-connected and } \]
\[\pi_1(U_\alpha \cap U_\beta, p) = 1 \]

\[U_\alpha \cap U_\beta \cap U_\gamma \text{ path-connected} \]

\[\therefore \text{Can apply Seifert-van Kampen to } \bigcup U_\alpha, \]

and by (x) the "relations" \(R \) are trivial

\[\Rightarrow \pi_1(X, p) = \bigast_{\alpha} \pi_1(U_\alpha, p) \]

\[\cong \bigast_{\alpha} \pi_1(G_\alpha, p) \]

Hence enough to prove:

Claim: \(\pi_1(G_\alpha, p) \cong \mathbb{Z} \)

\(p_1, p_2 \) endpts of \(e_\alpha \)

\(\varepsilon \) injective path in \(T \) from \(p_1 \) to \(p_2 \)

Clear: Each cpt of \(G_\alpha \setminus (\varepsilon \cup e_\alpha) \) is tree, so \(G_\alpha \)
def. retracts to \(e_\alpha \cong S^1 \)
Algorithm for finding $\pi_1(X,p)$ for graph X

1) Find max tree $T \subseteq X$
2) Let $\{e_\alpha\}$ be edges not in T
3) Orient e_α and let i_α and t_α be its initial and terminal vertices
4) For $v \in V(X)$, let δ_v be unique injective path in T from p to v

Conclusion: $\pi_1(X,p)$ is free grp w/ generators $\{X_\alpha\}$ w/ $X_\alpha = \delta_{i_\alpha}^{-1} e_\alpha \delta_{t_\alpha}$ loop based at p

Ex:

$\pi_1(X,p)$ is free grp on X_1, \ldots, X_5, where:

- $X_1 = ae_1f$
- $X_2 = be_2d$
- $X_3 = be_3f$
- $X_4 = fg e_4$
- $X_5 = fe_5f$

Rmk: Basis for $\pi_1(X,p)$ not canonical 'cause it depends on T

However, # of generators indep. of T