Def'n: A **knot** is an embedding $f: S^1 \to \mathbb{R}^3$

Ex: a) unknot

b) trefoil

Problematic Example: wild knot

Def'n: A **tame knot** is a knot $f: S^1 \to \mathbb{R}^3$ s.t. exists finitely many pts $x_1, \ldots, x_n \in S^1$ s.t. for each cpt C of $S^1 \setminus \{x_1, \ldots, x_n\}$, $f(C)$ is straight line
Remark: Will still draw tame knots as smooth curves. You should imagine that they are divided into so many straight segments that from a distance they appear smooth.

Equivalence of Knots
Want to say that 2 knots are equivalent if you can move one to the other in space, as if they were lengths of rope w/ ends joined.

Formal Def'ly: Let \(f, g: S^1 \to \mathbb{R}^3 \) be knots

a) Attempt # 1: \(f \) and \(g \) are homotopic if
\[\exists F: S^1 \times I \to \mathbb{R}^3 \quad s.t. \quad F(x,0) = f(x) \quad and \quad F(x,1) = g(x) \]

Problem: Can pass strands through each other, so all knots are homotopic

\[\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \]

b) Attempt # 2: \(f \) and \(g \) are isotopic if \(\exists F: S^1 \times I \to \mathbb{R}^3 \)
\[s.t. \quad F(x,0) = f(x), \quad F(x,1) = g(x) \]
and maps \(f_t: S^1 \to \mathbb{R}^3 \) w/ \(f_t(x) = F(x,t) \) are embeddings for all \(t \)

Problem: Can "shrink" knotted region through embeddings until it disappears, so all tame knots are isotopic
C) Attempt $\#3$: if f, g are ambient isotopic if
\[\exists H : \mathbb{R}^3 \times I \to \mathbb{R}^3 \text{ s.t. maps } h_t : \mathbb{R}^3 \to \mathbb{R}^3 \]
\[h_t(x) = H(x, t) \text{ are homeomorphisms for all } t, \quad h_0 = \text{id}, \]
and $g = h_1 \circ f$

"Move space along w/ knot"

Rmk: The maps $f_t = h_t \circ f : S^1 \to \mathbb{R}^3$ are embeddings for all t, so ambient isotopic knots are isotopic

Will say knots $f, g : S^1 \to \mathbb{R}^3$ are equivalent if they are ambient isotopic

Rmk: Above wild knot not equivalent to any tame knot

Main Problem of Knot Theory: Find invariants to distinguish non-equivalent knots.
Will confuse knot \(f: S^1 \rightarrow \mathbb{R}^3 \) with its image \(f(S^1) \).

Observation: If knots \(K_1 \) and \(K_2 \) are equivalent, then \(\mathbb{R}^3 \setminus K_1 \cong \mathbb{R}^3 \setminus K_2 \).

\(\mathbb{R}^3 \setminus K \) knows a lot about \(K \):

Thm (Gordon-Luecke): \(K_1, K_2 \subset \mathbb{R}^3 \) tame knots

\[K_1 \text{ equivalent to } K_2 \iff \mathbb{R}^3 \setminus K_1 \cong \mathbb{R}^3 \setminus K_2 \]

or \(K_2 \) w/ orientation reversed.

Defn: The group of a knot \(K \) is \(\pi_1(\mathbb{R}^3 \setminus K) \).

Often useful to view knot \(K \subset \mathbb{R}^3 \) as living in \(S^3 = \mathbb{R}^3 \cup \{\infty\} \).

Lemma: \(K \subset \mathbb{R}^3 \text{ knot } \implies \pi_1(\mathbb{R}^3 \setminus K) \cong \pi_1(S^3 \setminus K) \).

Ref:

\(U_1 = \mathbb{R}^3 \setminus K \), \(U_2 \subset S^3 \setminus K \) small open ball around \(\infty \).

Then

\[S^3 \setminus K = U_1 \cup U_2 \]

\[U_1 \cap U_2 = U_2 \setminus \{\infty\} \text{ path-connected} \]

\[\pi_1(U_2) = \pi_1(U_1 \cup U_2) = 1 \]

\[S^3 \setminus K \implies \pi_1(S^3 \setminus K) \cong \pi_1(U_1) \]

Recall from HW 1: \(S^3 = X_1 \cup X_2 \) w/ \(X_0 = D^2 \times S^1 \) and \(X_0 \cup X_2 \cong T^3 \) embedded in std way.
Theorem: K unknot. Then \(\pi_1(\mathbb{S}^3 \setminus K) \cong \mathbb{Z} \).

Proof:
Let \(\mathbb{S}^3 = X_1 \cup X_2 \) be as above. Then \(\mathbb{S}^3 \setminus K \) deformation retracts to \(X_2 \), so \(\pi_1(\mathbb{S}^3 \setminus K) \cong \pi_1(X_2) \cong \mathbb{Z} \).