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Abstract. In [T2] it was shown that the classifying space of the stable
mapping class groups after plus construction Z× BΓ+∞ has an infinite loop
space structure. This result and the tools developed in [BM] to analyse
transfer maps, are used here to show the following splitting theorem. Let
Σ∞(CP∞+ )∧p � E0∨· · ·∨E p−2 be the “Adams-splitting” of the p-completed
suspension spectrum of CP∞+ . Then for some infinite loop space Wp,(

Z× BΓ+
∞

)∧
p
� Ω∞(E0) × · · · × Ω∞(E p−3) × Wp

where Ω∞Ei denotes the infinite loop space associated to the spectrum Ei .
The homology of Ω∞Ei is known, and as a corollary one obtains large fam-
ilies of torsion classes in the homology of the stable mapping class group.
This splitting also detects all the Miller-Morita-Mumford classes. Our re-
sults suggest a homotopy theoretic refinement of the Mumford conjecture.
The above p-adic splitting uses a certain infinite loop map

α∞ : Z× BΓ+
∞ −→ Ω∞CP∞

−1

that induces an isomorphims in rational cohomology precisely if the Mum-
ford conjecture is true. We suggest that α∞ might be a homotopy equiva-
lence.

1. Introduction and statement of theorems

1.1. Mumford’s conjecture

For an oriented surface F, we let Diff(F; ∂) denote the topological group of
orientation preserving diffeomorphisms that keep the boundary ∂F point-

� The second author is supported by an Advanced Fellowship of the EPSRC.
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wise fixed when ∂F �= ∅. The components of Diff(F; ∂) are contractible
when the genus of F is greater than one [EE], [ES], so BDiff(F; ∂) �
BΓ(F) where Γ(F) = π0Diff(F; ∂) is the mapping class group of F.
BΓ(F; ∂) also has the same homotopy type as the moduli space of Riemann
surfaces of type F if ∂F �= ∅ and the same rational homotopy type if F is
closed.

In [Mu] Mumford conjectured that H∗(BΓ(F);Q) is, in low dimensions
compared to the genus, a polynomial algebra on classes κi of degree 2i. To
construct κi , let F → E → B be a smooth oriented surface bundle, and
T vE the tangent bundle along the fibres. This is an oriented 2-plane bundle
over E, i.e. a complex line bundle. Let∫

F
: H2i+2(E) → H2i(B)

be the “integration along the fibres” map. One defines characteristic classes

κi =
∫

F
c1(T

vE)i+1 ∈ H2i(B).(1.1)

In the universal situation:

F −→ E(F)
πF−→ BDiff(F; ∂), E(F) = EDiff(F; ∂) ×Diff(F;∂) F,

(1.2)

where F is some compact surface, one has

T vE(F) = EDiff(F; ∂) ×Diff(F;∂) TF,

and gets classes κi(F) ∈ H2i(BDiff(F; ∂)).
It is convenient to let the genus of the surfaces go to infinity. Let Fg,1+1

denote a genus g surface with two boundary components. One may glue to
one of the boundary components a torus with two boundary circles to get
an inclusion into Fg+1,1+1, and hence a map

BDiff(Fg,1+1; ∂) −→ BDiff(Fg+1,1+1; ∂).
The mapping class group Γg,1+1 = Γ(Fg,1+1) is perfect for g ≥ 3 [P]. So an
application of Quillen’s plus construction yields simply connected spaces
with unchanged homology and cohomology. The maps

BΓ+
g,1+1 −→ BΓ+

g+1,1+1, BΓ+
g,1+1 −→ BΓ+

g(1.3)

are thus [g/2]-connected, respectively [(g − 2)/2]-connected by the ho-
mology stability theorems of Harer and Ivanov [H2], [I]. The homotopy
direct limit of the maps in (1.3) as g → ∞ is denoted BΓ+∞. Its homology
is the stable homology of the mapping class group. Note that from (1.3)
Mumford’s conjecture takes the form

H∗(BΓ+
∞;Q) = Q[κ1, κ2, . . . ].(1.4)
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1.2. Refinement of Mumford’s conjecture

The integration along fibre used to define the classes κi can be given a more
homotopical formulation. To this end let us return to the smooth fibre bundle
F → E

π→ B and suppose for simplicity that F is a closed surface. Choose
a smooth embedding of E in some Euclidean space Rk. The normal bundle
NvE of the resulting embedding E ⊂ B × Rk is the “normal bundle along
the fibres”,

T vE ⊕ NvE � E × Rk.

Collapsing the complement of a tube around E in B × Rk induces a map

B+ ∧ Sk −→ Th(NvE)(1.5)

into its Thom space (one point compactification of NvE assuming B is
compact). The induced map in cohomology composed with the Thom iso-
morphism is the integration homomorphism

∫
F . The composition of (1.5)

with the inclusion

Th(NvE)
ω−→ Th(T vE ⊕ NvE)

defines a map from B+ ∧ Sk to E+ ∧ Sk and hence as k → ∞ the map

trf(π) : B −→ Q(E+), Q = Ω∞S∞.(1.6)

This is the Becker-Gottlieb transfer map, [BG].
Consider the canonical line bundle Ls over the complex projective space

CPs and its complementary Cs-bundle −Ls. We use the notation

Ω∞CP∞
−1 = colim Ω2s+2Th(−Ls),

Q(S−1) = colim Ωs+1Ss.

There is a fibration, [R]

Ω∞CP∞
−1

ω∞−→ Q
(
BS1

+
) ∂−→ Q(S−1).(1.7)

Here and in the rest of the paper we prefer to write BS1 instead of CP∞.
The map ∂ is the so called circle transfer map. The oriented 2-plane bundle
T vE is classified by Ls for s sufficiently large, giving a map from Th(NvE)
to Th(−Ls) and universally maps

αF : BDiff(F) → Ω∞CP∞
−1, α∞ : Z× BΓ+

∞ −→ Ω∞CP∞
−1.

1

The rest of the paper revolves around the following extension of (1.4).

1 The indicated construction of αF and α∞ only gives well-defined homotopy classes
on compact subcomplexes of BDiff(F) and Z × BΓ+∞ due to possible “lim1-problems”.
Section 2 below however gives a different construction that is indeed well-defined on all of
BDiff(F) and Z× BΓ+∞, see Theorem 2.6 and the discussion following (2.12).
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Conjecture 1.1. The map α∞ : Z × BΓ+∞ → Ω∞CP∞
−1 is a homotopy

equivalence.

We note that the conjecture does indeed extend Mumford’s conjecture
(1.4). The map ω∞ of (1.7) is a rational equivalence, and so is the map

L̂ : Q
(
BS1

+
) = Q(S0) × Q(BS1) −→ Z× BU(1.8)

that is the degree map on the first factor and the reduced canonical line
bundle on the second factor, extended over Q(BS1) via Bott periodicity (see
below). There results an isomorphims in cohomology of say 0-components

H∗(Ω∞
0 CP∞

−1;Q
) = H∗(Q0

(
BS1

+
);Q) = H∗(BU;Q).

Moreover the classes κi are related to the above maps by the formula

κi = α∗
∞ω∗

∞ L̂∗(i!chi)(1.9)

where chi denotes the i-th component of the Chern character, cf. Sect. 4.2.
The conjecture can be given a more geometric flavor by applying the

oriented bordism functor ΩSO∗ to α∞, cf. [CF]. The n-th group ΩSO
n (BΓ∞)

consists of bordisms classes of oriented surface bundles F → En+2 → Mn

with the genus of F large compared to n. By transversality, ΩSO
n (Ω∞

0 CP∞
−1)

is the group of cobordism classes of 4-tuples (En+2, ψ, Mn, ξ) with ξ an
oriented R2-bundle over E and ψ an arbitrary smooth map from E to M
subject only to the condition that TE is stably equivalent to ξ ⊕ψ∗TM. For
any homology theory E, E∗ (X) = E∗(X+). Oriented bordism is a homology
theory, so

ΩSO
∗

(
BΓ+

∞
) = ΩSO

∗ (BΓ∞).

Moreover ΩSO∗ (α∞) is an isomorphism for all values of ∗ if and only if
H∗(α∞) is an isomorphism. Hence the conjecture is equivalent to the as-
sertion that each cobordism class [En+2, ψ, Mn, ξ] contains a “unique”
representative with ψ a submersion. Note though that a necessary condition
for the bordism class [E, ψ, M, ξ] to contain a surface bundle is that the
bundle data can be destabilized up to bordism. One might expect 2-primary
obstructions to do so which suggests in the statement of Conjecture 1.1 the
spaces should maybe be localized away from two.

The cohomology of BΓ∞ has been calculated for ∗ ≤ 2 in [P], [H1]
and [H3]: H1(BΓ∞) = 0, H2(BΓ∞) = Z, and H3(BΓ∞) = 0. We will
show in Sect. 4.2 that in these dimensions (as well as on connected compo-
nents) α∞ induces an isomorphism. Let us finally note the fourth cohomo-
logy group of the stable mapping class group is of rank two by [H4], while,
cf. (4.5),

H4(Ω∞
0 CP∞

−1

) = Z⊕ Z⊕ Z/24.(1.10)
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Let η : BΓ+∞ → BSp(R) be the map that results from the action of
the mapping class group on the first homology of the underlying surface.
Since the maximal compact subgroup of the symplectic group Sp2g(R) is
the unitary group Ug, BSp(R) � BU and η can be considered as a (stable)
unitary bundle. Mumford and Morita, see e.g. [Mo; p. 555], prove that

η∗((2i − 1)! ch2i−1) = (−1)i Bi

2i
κ2i−1.(1.11)

In Sect. 4.3 below we construct η′ : Ω∞
0 CP∞

−1 → BU such that (1.11) is
satisfied for η replaced by η′ ◦α∞, showing that (1.11) is in agreement with
Conjecture 1.1.

1.3. Methods and results

By the main result in [T2], the space Z× BΓ+∞ is an infinite loop space in
the sense that there exists a sequence of spaces En with En = ΩEn+1 and

Z× BΓ+
∞ = E0.

We reprove this in Sect. 2 using a somewhat different model for the space
Z × BΓ+∞. By definition Ω∞CP∞

−1 is also an infinite loop space, and the
main purpose of Sect. 2 is to show that the map α∞ is an infinite loop map.
This allows us to use the tools of stable homotopy theory.

In particular, the category of infinite loop spaces and infinite loop maps
has three obvious advantages over the category of spaces. First, a map
f : X → E0 into an infinite loop space extends uniquely (up to homotopy)
to an infinite loop map f̂ ,

X −−−→ Q(X)

f

� f̂

�
E0 E0.

Second, an infinite loop map f : E0 → E ′
0 is a homology equivalence if

and only if it induces an isomorphism on spectrum homology,

Hspec
n (E0) = colimHn+k(Ek).

In particular, an infinite loop map from Q(X) to Q(Y ) is a homology equiva-
lence precisely if the induced map from H∗(X) to H∗(Y ) is an isomorphism.
Third, any map from X to E0 factors over Quillen’s plus construction (with
respect to any perfect subgroup of π1 X),

[X, E0] = [
X+, E0

]
.

In Sect. 3 we produce maps

ρF : BCpn −→ BDiff(F)
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by exhibiting a suitable closed surface F equipped with an action of Cpn , and
then study τF ◦ ρF where τF is the transfer map trfπF followed by the map
induced by the classifying map of the vertical tangent bundle over E(F), cf.
(1.2). This amounts to a study of the Becker-Gottlieb transfer for bundles

πn : ECpn ×Cpn F −→ BCpn,

where we can use results from [BM]: If F admits a non-degenerate vector
field X and S(X) denotes its singular set, then πn contains the covering
space

ECpn ×Cpn S(X) −→ BCpn

and the transfer trf(πn) is expressible in terms of the covering space transfer,
which is easy to calculate.

In order to assemble the maps ρF to a map into Z× BΓ+∞ one needs to
pass to p-completions in the sense of [BK, Chap. VI]. For an infinite loop
space E of finite type, i.e. with finitely generated homotopy groups in each
degree, one has

lim
[
BCpn, E∧

p

] = [
BS1, E∧

p

] = [BS1, E] ⊗ Zp(1.12)

where E∧
p denotes the p-completion of E and Zp is the ring of p-adic

integers. This applies to E = Z × BΓ+∞. Using the ρF and (1.12) we
construct in Theorem 3.6 a map from BS1 into (BΓ+∞)∧p . The infinite loop
structure on BΓ+∞ gives an extension µ̃p : Q(BS1) −→ (BΓ+∞)∧p . There is
also a map from QS0 into Z× BΓ+∞, namely the unique infinite loop map
that extends the embedding S0 ⊂ Z× BΓ+∞ which sends the non-base point
into (1, ∗). In all we get an infinite loop map

µp : Q
(
BS1

+
) −→ (

Z× BΓ+
∞

)∧
p
.

In Sect. 3 we calculate the composition of the map µp and the p-completion
of

τ∞ : Z× BΓ+
∞

α∞−→ Ω∞CP∞
−1

ω∞−→ Q
(
BS1

+
)
.

Let

ψk : BS1 −→ (BS1)∧p

be the map that represents k ·c1(L) in H2(BS1;Zp). It extends uniquely (up
to homotopy) to a self map of Q(BS1)∧p which we again denote by ψk. Our
main result is

Theorem 1.2. The composition τ∞ ◦ µp is homotopic to the map(−2 ∗
0 1 − gψg

)
: (QS0 × Q(BS1))∧p −→ (QS0 × Q(BS1))∧p ,

where g ∈ Z×
p is a topological generator (g = 3 if p = 2).
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The diagonal entry −2 : QS0 → QS0 was initially proved in [T3], and
is reproved below, see (2.14) and the end of Sect. 3.3. The bottom diagonal
entry is identified in Theorem 3.6.

The theorem contains the result of Miller and Morita from [Mi] and [Mo]
because 1−gψg is non-zero on each homology group. Indeed as mentioned
earlier Q(BS1+) is rationally equivalent to Z× BU, so H∗(BΓ+∞;Qp) con-
tains the polynomial algebra H∗(BU;Qp). The same will then be the case
with Q coefficients. But Theorem 1.2 is much stronger.

In Sect. 4 we show that

Q
(
BS1

+
)∧

p � Ω∞E0 × · · · × Ω∞E p−2

for p-complete infinite loop spaces Ei (Ω
∞E0 = (QS0)∧p × Ω∞ Ẽ0). The

splitting is preserved by Adams operations, so that

1 − gψg : Ω∞ Ẽi −→ Ω∞ Ẽi (Ei = Ẽi, i > 0)

and we calculate the induced map on spectrum homology. The result is that
for p > 2, 1 − gψg is a homotopy equivalence on Ω∞ Ẽi for i �= p − 2.
This implies the splitting listed in the abstract, and exhibits large families
of torsion classes in H∗(BΓ∞), cf. Corollary 4.5.

Finally we combine with the main result from [MS] which asserts that
at odd primes p there exists an infinite loop map

l−1 : (
Ω∞

0 CP∞
−1

)∧
p
−→ BU∧

p

which is split surjective in the sense that there exists a map σ−1 in the other
direction with l−1 ◦ σ−1 � id. The map σ−1 is not an infinite loop map
however – it only deloops once.

Theorem 1.3. For odd primes p, the composition

l−1 ◦ α∞ : (
BΓ+

∞
)∧

p
−→ BU∧

p

is split surjective.

This is a Zp integral version of the theorem by Miller and Morita: the
polynomial algebra Zp[c1, c2, . . . ] is a split summand of H∗(BΓ+∞;Zp).

Acknowledgements. It is a pleasure to acknowledge the help we have received from
S. Bentzen, K. Nielsen, N. Strickland, and J. Tornehave at various points. In particular
we are indepted to M. Weiss. His comments on an early version of the paper made us
completely change perspective on the maps α∞ and τ∞.
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2. The pretransfer as a map of infinite loop spaces

The goal of this section is to define the map

α∞ : Z× BΓ+
∞ −→ Ω∞CP∞

−1

of Conjecture 1.1 as a map of infinite loop spaces. Indeed, we will define
it as a map of simplicial Γ-spaces (in the sense of [S1]) which represent
deloops of the above spaces. The main technical challenge is to construct
a model for Z× BΓ+∞ out of surfaces embedded in R∞ so that the transfer
map can readily be defined. This model also has an infinite loop space
structure that is easily seen to be compatible with that of Ω∞CP∞

−1.

2.1. Unparametrized surfaces in R∞

We construct a topological category Y of unparametrized, oriented, one
dimensional manifolds and cobordisms in R∞ = colimn→∞Rn.

Objects in Y. Let

Sn = S1 � · · · � S1, n − summands

be the disjoint union of n circles and let Emb(Sn;R∞) be the space of
smooth embeddings of Sn inR∞ with the usual topology, see e.g. [Hi; p. 35].
The group of orientation preserving diffeomorphisms of Sn is the wreath
product of the group Diff(S1) of orientation preserving diffeomorphisms of
S1 twisted by the symmetric group on n letters,

Diff(Sn) = Σn � Diff(S1) � Σn � SO(2).

It acts freely on Emb(Sn;R∞) by precomposition

(φ.α)(x) = α(φ−1(x)),

where φ ∈ Diff(Sn), α ∈ Emb(Sn;R∞), and x ∈ Sn. We define the objects
in Y to be the orbits under this action,

ob Y =
∐
n≥0

Emb
(
Sn;R∞)

/Diff(Sn).

Given an embedding α ∈ Emb(Sn;R∞), we think of the associated object
[α] ∈ Y as the image im(α) (with an orientation).
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Morphisms in Y. Let F be an abstract oriented smooth cobordism from
Sn to Sm. Assume that the incoming and outgoing boundary of F are
parametrized and have a collar, i.e. there are identifications

∂−F = Sn and ∂+F = Sm

which extend on an open neighborhood of the boundary to a collar O(∂−F)
= Sn × [0, ε) and O(∂+F) = Sm × (−ε, 0] for some ε > 0. Let

EmbΩ(F; [0, t] × R∞), t > 0

denote the space of smooth embeddings h : F ↪→ [0, t] × R∞ such that

h(∂−F) = h(F) ∩ {0} × R∞, h(∂+F) = h(F) ∩ {t} × R∞,

and the collars are mapped to the standard εt-collar of ∂[0, t] × R∞ (e.g.
with εt = t/100). More precisely, restricted to the collars of incoming and
outgoing boundary,

h(x, s) = ( f−(s), ∂−h(x)), h(x, s) = ( f+(s), ∂+h(x))

where f− : [0, ε) → [0, εt) and f+ : (−ε, 0] → (t−εt, t] are linear and ∂−h
and ∂+h are the restriction of h to ∂−F and ∂+F respectively. Let Diff Ω(F)
denote the group of diffeomorphisms φ of the cobordism F that restrict on
the collar to diffeomorphisms of the form

∂−φ × id[0,ε), ∂+φ × id(−ε,0].

Again, ∂−φ and ∂+φ denote the restrictions of φ to ∂−F and ∂+F. Diff Ω(F)
acts freely on EmbΩ(F; [0, t] × R∞) by

(φ.h)(x) = h(φ−1(x)).

Define the space of morphisms in Y to be the space of orbits

morph Y = ob Y �
∐

F,t>0

EmbΩ(F; [0, t] × R∞)/Diff Ω(F),(2.1)

where the disjoint union is taken over t > 0 and cobordisms F, one fixed
representative for each diffeomorphism type of cobordisms from Sn to Sm.
The diffeomorphism types can be described as follows. Write F as the
disjoint union of its connected components,

F = Fg1,n1+m1 � · · · � Fgk,nk+mk .(2.2)

Here k ≥ 1, gi, ni,mi ≥ 0, Σini = n, and Σimi = m. The diffeomorphism
type of F as a cobordism is determined by the unordered k-tuple of triples
(gi, ni,mi). The topology on the morphism space is compatible with the
usual topology on R+ and the topology of the embedding spaces. The elem-
ents of ob Y represent the identity morphisms. We may think of a morphism
[h] = im(h) in Y as an embedded, oriented, unparametrized cobordism in
[0, t] × R∞.



518 I. Madsen, U. Tillmann

Structure maps. The source and target functions are induced by the re-
striction functions ∂− and ∂+. Given two embedded surfaces [h1], [h2] with
[∂+h1] = [∂−h2] = [β : Sm → R∞], their composition is

[h2] ◦ [h1] = im(h1) �im(β) im(h2) ⊂ [0, t1 + t2] × R∞.(2.3)

To see that this is well-defined, pick representatives hi : Fi → [0, ti ] × R∞
and let α = (∂−h2)

−1 ◦ (∂+h1) : Sm → Sm . Glue F1 and F2 along their
common boundary Sm using α to form a surface F1 �α F2. For the rep-
resentative F of F1 �α F2 in (2.1) pick a diffeomorphism of cobordisms
φ : F → F1 �α F2. Define

[h2] ◦ [h1] = [(h1 � h2) ◦ φ],
with h1 � h2 : F1 �α F2 → [0, t1 + t2] ×R∞. This definition is independent
of the choices of h1, h2 and φ. One checks that composition is continuous.

We next determine the homotopy type of the morphism spaces Y([α], [β])
for any embeddings α : Sn ↪→ R∞ and β : Sm ↪→ R∞. For F connected
the restriction maps ∂− and ∂+ define a fibration

Diff(F; ∂) −→ Diff Ω(F)
(∂−,∂+)−→ Diff(Sn) × Diff(Sm).

When F is not connected , the map (∂−, ∂+) may fail to be surjective on
components. Let ΣF ⊂ Σn×Σm denote the subgroup that is the image under
the restriction map (∂−, ∂+) of the connected components in Diff Ω(F). For
F as in (2.2), when all triples (gi, ni,mi) are distinct, ΣF is the group
Σn1 × · · · × Σnk × Σm1 × · · · × Σmk . If not all triples (gi, ni,mi) are
distinct, then Diff Ω(F) contains the diffeomorphisms that permute any
diffeomorphic factors of F. These diffeomorphisms correspond to certain
block permutations in ΣF . In general there is a fibration

Diff(F; ∂) −→ Diff Ω(F)
(∂−,∂+)−→ ΣF � Diff(S1).(2.4)

Theorem 2.1. There are homotopy equivalences

Y([α], [β]) �
∐

F

BDiff(F; ∂) × (Σn × Σm)/ΣF when [α] �= [β],

Y([α], [β]) � id[α] �
∐

F

BDiff(F; ∂) × (Σn × Σm)/ΣF when [α] = [β],

where the disjoint union is taken over all F as in (2.1) and id[α] is the identity
morphism of [α] ∈ ob Y.

Proof. Let

EmbΩ
α,β(F; [0, t] × R∞), EmbΩ

[α],[β](F; [0, t] × R∞)

denote the subspace of embeddings h such that

∂−h = α and ∂+h = β, respectively, [∂−h] = [α] and [∂+h] = [β].
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Restriction to the boundary defines a fibration

EmbΩ(F; [0, t] × R∞)
(∂−,∂+)−→ Emb

(
Sn,R

∞) × Emb
(
Sm,R

∞)
(2.5)

whose fibre over (α, β) is EmbΩ
α,β(F; [0, t] ×R∞). It restricts to a fibration

EmbΩ
[α],[β](F; [0, t] × R∞)

(∂−,∂+)−→ (Diff(Sn) × Diff(Sm))(α, β)

with base the free orbit of (α, β). The fibration (2.4) of groups acts freely
on this restricted fibration. On orbits one obtains a fibration

EmbΩ
[α],[β](F; [0, t] × R∞)/Diff Ω(F) −→ (Σn × Σm)/ΣF(2.6)

with fibre EmbΩ
α,β(F; [0, t] × R∞)/Diff(F; ∂). Any connected component

of the space of embeddings Emb(M, ∂M; N, ∂N) of a manifold M into an
m-connected manifold N is (n − 2 − 2m)-connected where m = dim M
and n = dim N. This can be derived from Whitney’s embedding theorems,
Theorem 5 and 6 in [W]. Thus EmbΩ

α,β(F; [0, t] ×R∞) is contractible, and
hence the fibre of (2.6) is homotopic to

BDiff(F; ∂).
The total space of (2.6) injects homotopy equivalently into a connected
component of Y([α], [β]). This proves the theorem. "�

2.2. Deloop of Z× BΓ+∞ and Γ-space structure

Consider now the subcategory

Yb ⊂ Y

of Y with the same object space, and morphism space just as in (2.1) except
that the disjoint union is taken over cobordisms F of type (2.2) such that
each mi is positive, i.e. each connected component of F has at least one
outgoing boundary circle.

Given a pointed space X, let ΩX denote its based loop space, and given
a category C, let |C| denote the realization of its simplical nerve N.C. Pick
any object to represent the base point in |C|.
Theorem 2.2. There is a homotopy equivalence Ω|Yb| � Z× BΓ+∞.

Proof. The argument in [T2] can be adopted to the present situation and
we refer to that paper for more details. Fix β0 : S1 ↪→ R2 ⊂ R∞ and let
α : Sn ↪→ R∞ represent any other object in Y. In Yb any cobordism from
[α] to [β0] has to be connected, and by Theorem 2.1

Yb([α], [β0]) �
∐
g≥0

BΓg,n+1,
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with the identity morphism added when [α] = [β0]. Fix a morphism [h0] ∈
Yb([β0], [β0]) of type F1,1+1 and form the telescope

X∞([α]) = Tel(Yb([α], [β0]) [h0]−→ Yb([α], [β0]) [h0]−→ . . . ) � Z× BΓ∞,n.

(2.7)

Let EYbX∞ be the homotopy colimit of the contravariant functor X∞ from
Yb to topological spaces. It can be identified with the telescope (under [h0])
of the classifying space of the category of objects over [β0] in Yb. Hence
it is contractible. By the homology stability theorem [H2], [I], cf. (1.3), the
homology of BΓg,n+1 is independent of g and n in dimensions less that g/2.
Thus the natural projection

EYbX∞ −→ BYb = |Yb|
is a homology fibration. By the group completion theorem for categories
(see [T2] and [McS]) this gives a homotopy equivalence

X∞([α])+ � Z× BΓ+
∞ −→ Ω|Yb|

for any [α] ∈ Yb. "�
Remark. The above proof does not extend as to give the homotopy type
of Ω|Y|. However, from [T1] we know that Ω|Yb| and Ω|Y| have the
same group of connected components, and one might expect that they are
homotopy equivalent.

Let Γop be the category of finite based sets

n = {0, 1, . . . , n}, n ≥ 0,

and based maps. A Γ-space in the sense of Segal [S1] is a functor F from
Γop to the category of simplicial spaces such that the map

p1 × · · · × pn : F(n) −→ F(1) × · · · × F(1), n − factors,

is a homotopy equivalence for each n ≥ 0; here the map pi : n → 1 sends
i to 1 and j �= i to the base point 0. The main theorem of [S1] is that if
π0F(1) is a group then F(1) is an infinite loop space.

We will now define a Γ-structure corresponding to disjoint union of
cobordisms on the simplicial nerve N.Y of Y which restricts to a Γ-structure
on the nerve N.Yb of Yb. Let Y be a functor from Γop to simplical spaces
such that the q simplices in Y(n) are the pairs

([h̄], λ) with [h̄] ∈ NqY and λ : π0im(h̄) → {1, . . . , n}
where [h̄] = ([h1], . . . , [hq]) is a q-tuple of composable morphisms, and
im(h̄) := [hq] ◦ · · · ◦ [h1] is the composed embedded surface, cf. (2.3).
In particular, Y(0) = ∗, represented by the empty manifold ∅ = S0, and
Y(1) = N.Y. For s : n → m in Γop define

Y(s) : Y(n) −→ Y(m) via ([h̄], λ) %→ ([h̄], s ◦ λ).
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Theorem 2.3. Y is a Γ-space, and hence Z× BΓ+∞ is an infinite loop space.

Proof. The projection pi maps ([h̄], f ) ∈ Y(n)q to the union of the com-
ponents in f −1(i). Hence, Y(n)q is mapped injectively onto Y(1)n

q \ '
where ' is the fat diagonal of elements ([h̄1], . . . , [h̄n]) in Y(1)n

q such that

im(h̄i) ∩ im(h̄ j) �= ∅ for some i �= j. Observe that for any compact set
K ⊂ [0, t] × R∞, the inclusion

EmbΩ(F; [0, t] × R∞ \ K ) ↪→ EmbΩ(F; [0, t] × R∞)

is a homotopy equivalence of contractible spaces by Whitney’s embed-
ding theorems [loc.cit.]. Clearly, the inclusion is Diff Ω(F)-equivariant and
hence induces a homotopy equivalence on homotopy orbits. But the action
of Diff Ω(F) is free on both spaces so that it induces also a homotopy equiv-
alence on orbits. An inductive argument shows that Y(1)n \ ' ↪→ Y(1)n is
a homotopy equivalence. Thus Y defines a Γ-space structure on N.Y which
clearly restricts to a Γ-space structure on NYb. Note that |Y| and |Yb| are
connected and hence by [S1] are infinite loop spaces. But by Theorem 2.2
Ω|Yb| � Z× BΓ+∞ and thus Z× BΓ+∞ is an infinite loop space. "�

2.3. Deloop of α∞

We will first give a convenient model for the deloop of Ω∞CP∞
−1. Let

Gr(2, 2l + 2) denote the Grassmannian manifold of oriented 2-dimensional
subspaces P in R2l+2. The orthogonal complement −Ll of the canonical
plane bundle over Gr(2, 2l + 2) has fibre

{v ∈ R2l+2|P ⊥ v}
at P. Let Th(−Ll) be its Thom space, i.e. the fibrewise campactification of
−Ll modulo the section at infinity. Define a simplicial space Zl. by setting
Zl

0 = Ω2l+1Th(−Ll) and for q ≥ 1, Zl
q to be the space of (q − 1)-times

broken paths in Ω2l+1Th(−Ll). To be more precise and fix the notation

Zl
q :=

∐
u∈Uq

Map([0, u(q)];Ω2l+1Th(−Ll)),

where the disjoint union is taken over the space Uq of monotone, based maps
u : {0, 1, . . . , q} → R≥0. The topology on Zl

q is compatible with the usual
topology of paths in Ω2l+1Th(−Ll) and the topology on Uq. The simplicial
maps are induced by the based monotonic maps {0, . . . , q} → {0, . . . , p} in
the usual way. There are canonical maps Zl. → Zl+1. of simplicial spaces
induced by adding the trivial line bundle to −Ll. Define the simplicial
space Z. by

Z. := colim l→∞ Zl.
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Lemma 2.4. There is a homotopy equivalence |Z.| � Ω∞−1CP∞
−1.

Proof. Consider Zl
0 = Ω2l+1Th(−Ll) as the constant simplicial space

and let I : Zl
0 → Zl. be the simplicial map that identifies Zl

0 at the
q-th level with the constant maps in Map([0, u(q)];Ω2l−1Th(−Ll)) ⊂
Zl

q where u is defined by u(i) = i. Each Uq is contractible and each
Map([0, u(q)],Ω2l+1Th(−Ll)) is homotopic to Ω2l+1Th(−Ll). Thus the
simplical map I defines is a homotopy equivalence in each simplicial di-
mension and hence

|Zl.| � Ω2l+1Th(−Ll).

Recall that by definition Ω∞(CP∞
−1) = colim Ω2l−2Th(−Ll). Hence,

|Z.| = Ω∞−1(CP∞
−1

)
. "�

Define a simplicial Γ-space Z. by setting Z(n)q to be the pairs

( f, σ) with f ∈ Zq and σ : supp( f ) → {1, . . . , n},
where f is considered as a function [0, u(q)]+ ∧ S2l+1 → Th(−Ll) and
supp( f ) is the complement of f −1(∗), the inverse image of the point at
infinity in Th(−Ll). For s : n → m in Γop define Z(s) via ( f, σ) %→ ( f, s◦σ).
By a similar argument as for Y, one sees that this defines an infinite loop
space structure on |Z.| which is compatible with the usual infinite loop
space structure on Ω∞−1CP∞

−1.
In order to define the Thom collapse map, we need to consider embedded

surfaces with a tubular neighborhood. In analogy with Zq, we may think of
a q-simplex [h̄] in NqY as a q-times broken cobordism in [0, u(q)]×R2l+1,
for some l, with breaking points u(i) = t1 + · · · + ti . Let Yl

q be the space of
pairs

ζ = ([h̄],O)(2.8)

where [h̄] is as above and O is a tubular neighborhood of im(h̄) =
[hq] ◦ · · · ◦ [h1] in [0, u(q)] × R2l+1. For a given [h̄], the space of tubular
neighborhoods is contractible. The canonical projections Yl. → N.Y define
thus a homotopy equivalence

|Y.| �−→ |Y|, with Y. := hocoliml→∞Yl.(2.9)

The Γ-space structure on N.Y extends to a Γ-space structure on Y. in an
obvious way. In particular (2.9) is a homotopy equivalence of infinite loop
spaces which restricts to |Yb.| � |Yb| where Yb. is the subspace of Y.
corresponding to Yb.
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We can now define a simplicial map

θ : Y. → Z.

using Thom collapse and the classifying map of the vertical tangent bundle
for the universal surface bundle. Let

ζ = ([h̄],O) ∈ Yl
q

be as in (2.8). Identify O via radial expansion with the normal bundle
Nim(h̄) of the embedded surface im(h̄). Under this identification, let the
point (s, t) ∈ O ⊂ [0, u(q)] × R2l+1 correspond to (x, v) with x ∈ im(h̄)
and v ∈ Nx im(h̄). Define

θζ ∈ Map
([0, u(q)]+ ∧ S2l+1,Th(−Ll)

)
by

θζ(s, t) =
{ ∗ if (s, t) /∈ O

(Tx im(h̄), v) if (s, t) ∈ O

where Tx im(h̄) is the tangent plane at x. The point corresponding to the
empty set (with the empty tubular neighborhood) is mapped by definition
to the constant map at infinity ∗.

Clearly θ is compatible with the Γ-structures on Y. and Z.. Restricting
θ to Yb. and taking loop spaces, we have proved

Theorem 2.5. α∞ := Ω(θ|Yb.) : Z× BΓ+∞ → Ω∞CP∞
−1 is a map of infinite

loop spaces. "�

2.4. Induced map of components and relation to the transfer map

The categories Y and Yb have many objects and hence |Y| and |Yb| have no
canonical base point. The point representing the empty 1-manifold ∅ = S0
is however the implicit choice in Theorem 2.5 as it is the only vertex mapped
by θ to the base point in Ω∞−1(CP∞

−1). The empty set ∅ is also the unit for
the Γ-space structure on N.Y.

From the proof of Theorem 2.2 it makes most sense to identify the com-
ponents in Ω|Yb| � Z × BΓ+∞ with the integers in such a way that the
translation by [h0] in (2.7) represents component shift by +1, i.e. compo-
nents are linked to the genus g. More precisely, let F be a cobordism from
Sn to Sm, and let α : Sn → R∞ and β : Sm → R∞ represent two objects
in Y. By (2.6) there is a map

BDiff(F; ∂) � EmbΩ
α,β(F; [0, 1] × R∞)/Diff(F; ∂) ↪→ Y([α], [β]),
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and hence a map

[0, 1] × BDiff(F; ∂) −→ |Y|.
Taking adjoints yields a map

BDiff(F; ∂) −→ Ω[α],[β]|Y|
where Ωx,y denotes the space of paths from x to y. Combined with any
choice of morphisms

[h : F ′ → [0, 1] × R∞] ∈ Y(∅, [α])
and

[h ′ : F ′′ → [0, 1] × R∞] ∈ Y(∅, [β])
this defines a map from BDiff(F; ∂) to Ω∅,∅|Y| = Ω|Y|. The component
of the image depends on the choice of [h] and [h ′]. By [T1; Theorem 7] this
component is given by

1

2
(χ(F ′′) − χ(F) − χ(F ′)) ∈ Z = π0 Ω|Yb| = π0 Ω|Y|(2.10)

where χ denotes the Euler characteristic.
We now define two group completion maps. For F = Fg,1+1 : S1 → S1,

let F ′ = F ′′ : S0 → S1 be the disk, and [α] = [β] be represented by the
unit circle in R2 ⊂ R∞. This yields a group completion map into the g-th
component

γb : BDiff(Fg,1+1; ∂) −→ Ω|Yb| � Z× BΓ+
∞.

When F = Fg is the closed surface we need to consider the full category Y
in order to define the group completion map. Setting F ′ = F ′′ = Id∅ this
gives a map into the (g − 1)-th component:

γ : BDiff(Fg) −→ Ω|Y|.
γb and γ are related by the homotopy commutative diagram

BDiff(Fg,1+1; ∂) incl−−−→ BDiff(Fg)

γb

� γ

�
Ω|Yb| −[1]−−−→ Ω|Y|

(2.11)

where incl denotes the inclusion map induced by gluing two disks to the
boundary components of Fg,1+1 and ±[k] denotes component shift by ±k.

Define

αFg = Ω(θ) ◦ γ : BDiff(Fg) −→ Ω∞CP∞
−1(2.12)
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and compare it with the Becker-Gottlieb transfer map of the universal surface
bundle, cf. (1.2) and (1.6). Taking the quotient space Emb(Fg, [0, 1] ×
R∞)/Diff(Fg) ⊂ Y1 as our model for BDiff(Fg), the transfer

trf(πFg) : BDiff(Fg) → Th(NvE(Fg)) → Th(T vE(Fg) ⊕ NvE(Fg))

� Q(E(Fg)+)

can be defined by assigning to ζ = ([h],O) ∈ Y1 the collapse map c̃ζ which
is defined for (s, t) ∈ [0, 1] × R∞ by

c̃ζ (s, t) =
{ ∗ if (s, t) /∈ O

(x, v) if (s, t) ∈ O;
here, as in the previous section, the neighborhood O of im(h) is identified
with the normal bundle Nim(h) such that (s, t) corresponds to (x, v) with
x ∈ im(h) and v ∈ Nvim(h). From the definition of θ it follows that the
diagram

BDiff(Fg)
trf(πFg )−−−−→ Q(E(Fg)+)

Q(T v+)−−−→ Q
(
BS1+

)
γ

� ∥∥∥
Ω|Y| � Ω|Y.| Ω(θ)−−−→ Ω|Z.| � Ω∞CP∞

−1
ω∞−−−→ Q

(
BS1+

)
is homotopy commutative; here T v denotes the classifying map of the
vertical tangent bundle T vE(Fg). Hence,

τFg = Q
(
T v

+
) ◦ trf(πFg) � ω∞ ◦ αFg .(2.13)

Lemma 2.6. The map π0(Ω(θ)) = π0(α∞) : Z → Z is multiplication by
−1.

Proof. The transfer map trf(π) : B+ → Q(E+) of a fibration F → E
π→ B

(with B and F homotopy equivalent to finite CW-complexes) sends the base
space to the connected component of the Euler characteristic of its fibre,
cf. [BG]. As by definition Q(T v+) preserves components, (2.10) and (2.13)
imply that

π0(ω∞ ◦ Ω(θ)) = π0(ω∞ ◦ α∞) = multiplication by − 2.(2.14)

In degree 0 the homotopy exact sequence of the fibration (1.7),

0 −→ π0
(
Ω∞CP∞

−1

) ω∞−→ π0
(
Q

(
BS1

+
)) ∂−→ π1(QS0) −→ 0,

is

0 −→ Z −→ Z −→ Z/2 −→ 0.

Hence π0(ω∞) is multiplication by 2 from Z to Z, and π0(α∞) = π0(Ω(θ))
is multiplication by −1. "�
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On composition with Ω(θ) and in turn withω∞ , (2.11) yields homotopies

αFg ◦ incl � +[1] ◦ α∞ ◦ γb : BDiff(Fg,1+1; ∂) −→ Ω∞CP∞
−1,

τFg ◦ incl � +[2] ◦ τ∞ ◦ γb : BDiff(Fg,1+1; ∂) −→ Q
(
BS1

+
)
.

(2.15)

3. Transfers and diffeomorphisms of surfaces

This section constructs surfaces equipped with an action of a cyclic group
Cq and exhibits Cq-invariant vector fields on them. We then apply the
“parametrised Poincaré-Hopf” theorem from [BM] to get information about
the transfer of the universal smooth surface bundle (1.2).

3.1. Branched covers

Let Σ be a (fixed) connected surface. We consider divisors D = Σk
i=0ni pi ∈

C0(Σ;Z/q) with

(ni, q) = 1 and Σk
i=0ni ≡ 0 (modq).(3.1)

Given D, we construct an associated connected surface F with a smooth
Cq-action, and

FCq = {p0, . . . , pk}, F/Cq = Σ.

Let C(n) denote the complex plane with Cq-action t · z = e2πin/q · z
where t ∈ Cq is a generator. The tangent representation at pi of the surface
F will be

Tpi F = C(mi), mini ≡ 1 (modq).(3.2)

To construct F, consider the complement Σ∗ of a small open tube N{p0,
. . . , pk} of the branch points. We have the Poincaré duality diagram

H1(Σ∗;Z/q)
δ∗−−−→ H2(Σ,Σ∗;Z/q)

�
� �

�
H1(Σ, {p0, . . . , pk};Z/q)

∂∗−−−→ H0({p0, . . . , pk};Z/q),

and note by excision that

H2(Σ,Σ∗;Z/q) �
k⊕

i=0

H2
(
D2

pi
, S1

pi
;Z/q

)
.

The second condition in (3.1) implies a class κD ∈ H1(Σ∗;Z/q) with
∂∗(κD ∩ [Σ]) = D; the class κD is not unique except when Σ is the 2-
sphere. We view κD as a map from Σ∗ to BCq and let F∗ → Σ∗ be the
induced principal Cq-cover.
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Let S1(m) (resp. D2(m)) be the unit Cq-sphere (resp. -disk) ofC(m), and
let ∆n : S1 → S1 be the n-th power map ∆n(z) = zn. The restriction of the
Cq-cover F∗ → Σ∗ to the i-th boundary component S1

pi
is by construction

the pull-back

∂i F∗ −−−→ S1(1)� ∆q

�
S1

pi

∆ni−−−→ S1,

so ∂i F∗ = {(w, z)|wni = zq}. This is a circle by associating to u ∈ S1 the
pair (uq, uni ). Thus ∂i F∗ = S1(mi) as a Cq-space, where mini ≡ 1 (modq).

Definition 3.1. The Cq-branched cover of Σ associated with the divisor D
is the surface

F = F∗ �∂ (D(m0) � . . . � D(mk)).

In preparation for Theorem 3.5 below we note the following.

Lemma 3.2. There exists a non-degenerate Cq-invariant vector field X on
F whose singular set S(X) contains the branch points {p0, . . . , pk} with
local indices

indpi (X) = +1.

Proof. We choose a Morse function f : Σ → R such that {p0, . . . , pk} are
local maxima or local minima. Let X̄ be its gradient vector field. Its singular
set includes the branch points, so it lifts to an equivariant vector field X
on F.

The local index of X̄ at pi is +1, since the Morse index at pi is ±2, and
thus indpi (X) is also +1. (If the Morse index for f at pi had been ±1, then
indpi (X̄) = −1 and indpi (X) = 1 − 2q so X would have been degenerate
at pi). For p ∈ S(X)\ {p0, . . . , pk}, indp(X) = indπ(p)(X̄). This completes
the proof. "�

3.2. Transfers and vector fields

The transfer map of [BG], cf. (1.6), associates to a fibration F → E
π→ B,

with B and F homotopy equivalent to finite CW-complexes, a unique ho-
motopy class

trf(π) : B+ −→ Q(E+).

We shall need the following property of the transfer valid when E
π→ B has

compact Lie structure group G and F admits a non-degenerate G-invariant



528 I. Madsen, U. Tillmann

vector field X. Its singular set S(X) is a finite G-set, so there is a finite
covering space contained in E → B:

P ×G S(X)
incl−−−→ P ×G F = E

πS

� π

�
B B.

Theorem 2.10 from [BM] asserts a relationship between the Becker-Gottlieb
transfers trf(πS) and trf(π):

Theorem 3.3 [BM]. There is a homotopy commutative diagram

B
trf(π)−−−→ Q(P ×G F+)

trf(πS)

� Q(incl+)

�
Q(P ×G S(X)+)

IND(X )−−−→ Q(P ×G S(X)+).
"�

We recall the definition of IND(X). Choose a G-invariant metric on F,
a G-embedding of F into a representation space V , and a complement η
to the vector bundle P ×G V . This is possible since B is compact. For
σ ∈ S(X), the differential dXσ may be considered as an automorphism of
the tangent space Tσ F, and gives rise to a G-bundle automorphism dX of
τF |S(X ) = S(X)× V . We add the identity on νF |S(X ) and apply P ×G (−) to
get a bundle automorphism

P ×G dX : P ×G (S(X)× V ) −→ P ×G (S(X)× V )

over P ×G S(X). Let η̇ denote the fibrewise one point compactification of η.
Then (

P ×G S(X)× SV
) ∧P×G S(X ) π

∗
S(η̇) � (P ×G S(X)+) ∧ Sm

where on the left we take the fibrewise smash product. The fibrewise one
point compactification of P ×G dX induces a homotopy automorphism of
the above space. Looping down m times and letting m → ∞ we obtain the
infinite loop map

IND(X) : Q(P ×G S(X)+) −→ Q(P ×G S(X)+).

Our next lemma identifies IND(X) in more computable terms. First
some preparations are necessary.

Let W be a representation space for G and f : SW → SW a G-homotopy
equivalence. Its G-homotopy class is determined by the set of degrees
{deg f H |H ⊆ G}. These degrees (all equal to ±1) define a unit d( f ) of the
Burnside ring A(G), cf. [tDP]. Conversely, any d ∈ A(G)× is equal to d( f )
for a suitable (W, f ).
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Given a principal G-bundle E → B with compact base space there is
a map

A(G)× −→ [Q(B+), Q(B+)]Ω∞ � [B+, Q(B+)](3.3)

into the homotopy invertible infinite loop maps. It maps d( f ) into the
element determined by

E ×G f : E ×G SW −→ E ×G SW

upon taking fibrewise smash product with ξ̇ as above, where ξ is a comple-
ment to E ×G W .

In the situation of Theorem 3.3, let σ ∈ S(X) have isotropy group Gσ .
The one point compactification of

dXσ : Tσ F −→ Tσ F

defines an element χ(X, σ) ∈ A(Gσ )
×, i.e.

χ(X, σ) = {
det

(
dX H

σ

)∣∣H ⊆ Gσ

} ∈ A(Gσ )
×.(3.4)

We decompose S(X) into its G-orbits,

P ×G S(X) =
∐

P ×Gσ
{σ}; σ ∈ S(X)/G.

Since Q(−) converts wedge sums into products,

Q(P ×G S(X)+) =
∏

Q(P/Gσ+); σ ∈ S(X)/G.

The image of χ(X, σ) in [P/Gσ+ , Q(P/Gσ+)] under the map (3.3) is again
denoted by χ(X, σ), and we have

Lemma 3.4. In [P ×G S(X)+, Q(P ×G S(X)+],

IND(X) =
∏

χ(X, σ); σ ∈ S(X)/G.

"�
Remark. In [BM], Theorem 2.10, the map IND(X) was falsely asserted to
be

∏
indσ (X) rather than the more complicated expression in Lemma 3.4.

The mistake – pointed out in [MP] – occurs at the top of page 141 in [BM].
Indeed the homotopy Ĵt need not be proper. We note that indσ (X) = χ(X, σ)
if and only if det(dX H

σ ), H ⊆ Gσ is independent of H . This happens always
if Gσ is of odd order, since A(Gσ )

× = {±1}.
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In our application, the bundle is

π : ECq ×Cq F −→ BCq

where F is the branched cover from Definition 3.1, and X is the vector field
from Lemma 3.2. In this case χ(X, σ) = indσ (X). Indeed, the action on F
is free off the fixed set and it suffices to check that

dXσ : STσ F −→ STσ F

has equal degrees on fixed sets of the isotropy subgroup (Cq)σ . This is clear
since (Cq)σ �= 1 only for σ ∈ {p0, . . . , pk} where dXσ has degree +1.
Moreover, the Cq fixed set is S0, and dXσ maps it by the identity.

We seek information about the composition

τF : BDiff(F)
trf(πF )−→ Q(E(F)+)

Q(T v+)−→ Q
(
BS1

+
)
.(3.5)

where trf(πF ) is the transfer of the universal smooth F-bundle, and T v the
classifying map of the vertical tangent bundle of πF , cf. (2.13). Let F be
the Cq-surface of Definition 3.1, and

ρF : BCq −→ BDiff(F)

the associated map. Our next result calculates τF ◦ ρF in terms of the maps

ψ̂mi : BCq
j−→ BS1 ψmi−→ BS1 incl−→ Q

(
BS1

+
)

τ̂q : BCq
τq−→ Q((ECq)+)

�−→ Q(S0) ↪→ Q
(
BS1

+
)

where j is the standard map and τq is the transfer of the canonical covering
ECq → BCq.

Theorem 3.5. The composition τF ◦ ρF is equal to

Σk
i=0 ψ̂

mi + Σ ε j τ̂q

in [BCq+, Q(BS1+)], where ε j is a sign and the second sum runs over
the number of free Cq-orbits in the singular set of the vector field from
Lemma 3.2.

Proof. Consider the pull-back diagram

ECq ×Cq F
ρ̂F−−−→ E(F)

π

� πF

�
BCq

ρF−−−→ BDiff(F).
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Here we can take ECq = EDiff(F) = Emb(F;R∞). The transfer maps
trf(π) and trf(πF ) can thus be defined on all of BCq and BDiff(F) respec-
tively, cf. the definition of of the transfer above (2.13). Furthermore, by
construction

trf(πF ) ◦ ρF � Q(ρ̂F+) ◦ trf(π).2

We can now apply Theorem 3.3 to study π. We have

S(X) = {p0, . . . , pk} � S′ × Cq,

ECq ×Cq S(X) = (

k∐
i=0

BCq) � (S′ × ECq),

and hence

Q(ECq ×Cq S(X)+) = (

k∏
i=0

Q(BCq+)) × (
∏
j∈S′

Q(ECq+)).

The transfer for a sum of covering spaces is the product of the individual
transfers. So the transfer for

πS : ECq ×Cq S(X) −→ BCq

is the product of (k + 1) copies of the inclusion ι : BCq → Q(BCq+) and
|S′| copies of the standard transfer τq : BCq → Q(ECq+). By (3.2)

ρ̂∗
F(T

vE(F)) = ECq ×Cq TF

restricts to ECq ×Cq C(mi) over ECq ×Cq {pi}, and this bundle is classified
by ψmi ◦ j : BCq → BS1. An application of Theorem 3.3 and Lemma 3.4
completes the proof. "�

3.3. The splitting map µp

We use (3.9) and (3.10) on the surfaces constructed in Sect. 3.1. More
precisely let us fix a p-adic divisor on S2,

D = 1 · p0 + mp1 + . . . + mpk ∈ C0(S
2;Zp)(3.6)

with m ∈ Z×
p , 1 + km = 0 and −k ∈ Z a topological generator of Z×

p ,
or equivalently a generator of (Z/p2)×. (If p = 2, take k = 3.) For each
prime power q = pn , let F = F(n) be the closed surface of Definition 3.1
associated with the mod q reduction D ∈ C0(S2;Z/q). It has genus

g(n) = 1

2
(pn − 1)(k − 1)

2 More generally, transfers commute with pull-backs, at least on finite skeleta.
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by the Riemann-Hurwitz formula. We remove two open disks from F(n) to
get the surface F(n)1+1. There is a commutative diagram

(BCpn)[g(n)−2/2] ρn−−−→ BDiff(F(n)1+1)
+

incl

� incl

�
BCpn

ρn−−−→ BDiff(F(n))+

since the right-hand vertical map is [(g(n)− 2)/2]-connected by (1.3); X[r]
denotes the r-skeleton of X. We can compose the top horizontal map in
the above diagram with the map from BDiff(F(n)1+1)

+ to BΓ+∞ to obtain
homotopy classes

[ρn] ∈ [
BC[g(n)/2]

pn , BΓ+
∞

]
.(3.7)

We do not know that these elements fit together to define an element of the
inverse limit, and hence give a homotopy class

ρ∞ : BCp∞ → BΓ+
∞,

with a possible extension over the universal Bockstein BCp∞ → BS1
(p).

However, we can get around this difficulty upon p-completion.
Recall the notation that ψ̂l : BCpn → Q(BS1) is the standard map into

BS1 followed by ψl and the inclusion into Q(BS1). Let τ̃∞ denote the
composite of τ∞ = ω∞ ◦ α∞ with the projection of Q(BS1+) onto Q(BS1).

Theorem 3.6. There exists a map µ̃p : BS1 → (BΓ+∞)∧p such that

[τ̃∞ ◦ µ̃p] = 1̂ + kψ̂−k ∈ [
BS1, Q(BS1)∧p

]
.

Proof. Recall from (2.15) that τF(n) ◦ incl � +[2] ◦ τ∞ ◦ γb. Thus for the
reduced maps, Theorem 3.5 shows that

[τ̃∞ ◦ ρn] = 1̂ + kψ̂−k ∈ [
BC[g(n)/2]

pn , Q(BS1)
]
.

Indeed, since we project into Q(BS1) the second sum Σ ε j τ̂q in Theorem 3.5
disappears. Therefore the subset Gn of [BC[g(n)−2/2]

pn , BΓ+∞], given by

Gn = {[ f ] | [τ̃∞ ◦ f ] = 1̂ + kψ̂−k
}

is non-empty. It is also compact, since BCpn has finite homology in each
positive dimension, any of its finite skeleton has a finite homology decom-
position, and BΓ+∞ is of finite type.3 Then Tychonov’s theorem implies that

3 The homology of the stable mapping class group is finitely generated in each dimension
as can be deduced from the finite cell decompositions of moduli spaces in terms of ribbon
graphs [Pe], [K], or parallel slit domains [Bö]. An H-space with finitely generated homology
in all dimension has also finitely generated homotopy groups in all dimensions.
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limGn �= ∅. Let (ρn) ∈ limGn . Since g(n) → ∞ for n → ∞,

lim
[
BC[g(n)/2]

pn ,
(
BΓ+

∞
)] = lim

[
BCpn,

(
BΓ+

∞
)]
.

We now use Milnor’s exact sequence

0 −→ lim1[ΣXn, E] −→ [hocolim Xn, E] −→ lim[Xn, E] −→ 0

with Xn = BC[g(n)−2/2]
pn and E = BΓ+∞. The left term vanishes: a similar ar-

gument as above shows that [ΣXk, E] is finite; as E is an H-space [ΣXk, E]
is a group; the lim1 of a sequence of finite groups always vanishes, cf. [BK;
IX, §3]. Hence,

ρ = (ρn) : BCp∞ −→ BΓ+
∞

is well-defined. The universal (p-local) Bockstein operator

β(p) : BCp∞ = B(Q/Z(p)) −→ BS1
(p) = B(B(Z(p)))

with homotopy fibre BQ induces an isomorphism on ordinary homology
with Z/p coefficients. Also the map BS1 → (BS1)∧p induces an isomorph-
ism in Z/p-homology. The induced map

[
BS1, E∧

p

] �←− [
(BS1)∧p , E∧

p

] β∗
(p)−→ [

BCp∞, E∧
p

]
is an isomorphism, cf. [BK; VI, Prop. 5.4], and µ̃p = β∗

(p)(ρ) = β∗
(p)((ρn))

is well-defined. "�
Proof of Theorem 1.2. The map µ̃p of Theorem 3.6 together with the map
S0 → Z× BΓ+∞ that sends the non base point into (1, ∗) extends to a map

Q
(
BS1

+
)∧

p

µp−→ (
Z× BΓ+

∞
)∧

p

via the infinite loop space structure on Z× BΓ+∞. We study

τ∞ ◦ µp : Q
(
BS1

+
)∧

p
−→ Q

(
BS1

+
)∧

p
.

The composition

S0 −→ Z× BΓ+
∞

τ∞−→ Q
(
BS1

+
) = Q(S0) × Q(BS1)

is the map that sends the non base point to (−2, ∗) by (2.14). Since τ∞ =
ω∞ ◦ α∞ is an infinite loop map the composite

Q(S0) −→ Z× BΓ+
∞

τ∞−→ Q(S0) × Q(BS1)

has first component multiplication by −2 and trivial second component.
Apply Theorem 3.6. "�



534 I. Madsen, U. Tillmann

4. Proofs of the splitting theorems

In this section p is an odd prime.

4.1. Splitting of Q(BS1+)∧p

We consider the (reduced) cohomology theory associated to Q(BS1+)∧p ,

Ei(X) = [
X, Q

(
Si ∧ BS1

+
)∧

p

]
.

Recall, for k ∈ Z×
p , that ψk : (BS1)∧p → (BS1)∧p represents the cohomology

class k.c1(L). Then Q(1 ∧ ψk) defines a natural endomorphisms of Ei(X)
that commutes with suspension. Let ω : Z/p× → Z×

p be the Teichmüller
character that splits the natural projection Z×

p → Z/p×. We get a natural
action of Zp[Z/p×] on E∗(X), where l ∈ Z/p× acts on E∗(X) via the map

ψω(l) : (
BS1

+
)∧

p
−→ (

BS1
+
)∧

p
.

The ring Zp[Z/p×] is semisimple and decomposes into a sum of (p − 1)
copies of Zp, and there is an induced isomorphism of cohomology theories

E∗(X) ∼= E∗
0(X)⊕ . . . ⊕ E∗

p−2(X).(4.1)

More precisely, if l generates Z/p× then

ei = 1

p − 1

p−2∑
ν=0

ω(l−νi)lν, i = 0, . . . , p − 2(4.2)

are orthogonal idempotents of Zp[Z/p×], and

E∗
i (X) = ei E

∗(X).

The idempotents ei also define a splitting of p-complete K -theory, of-
ten called the Adams’ splitting [A]. We get from (4.1), and its K -theory
analogue, the induced splitting of infinite loop spaces

Q
(
BS1

+
)∧

p
� Ω∞E0 × Ω∞E1 × . . . × Ω∞E p−2

(Z× BU)∧p � B0 × B1 × . . . × Bp−2.
(4.3)

The ψk-operations reduce to the identity on the factor Q(S0) in Q(BS1+) =
Q(S0) × Q(BS1), so

Ω∞E0 = Q(S0)(p) × Ω∞ Ẽ0

and

Q(BS1)∧p = Ω∞ Ẽ0 × Ω∞ Ẽ1 × · · · × Ω∞ Ẽ p−2,

with Ẽi = Ei for i > 0.
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The canonical line bundle induces a map from BS1+ into the 1-component
of Z× BU that extends to a map L̂ of Q(BS1+) to Z× BU by Bott period-
icity, cf. (1.8). If we identify Q(BS1+) with QS0 × Q(BS1) via the natural
projections then L̂ becomes identified with (deg, (L − 1)∧). In particular
we have on the zero component

L̂ � (L − 1)∧ : Q0
(
BS1

+
) −→ BU.(4.4)

Both L̂ and (L − 1)∧ commute with Adams operations, and hence the action
of the idempotents ei , and define infinite loop maps from Ω∞Ei to Bi, and
Ω∞ Ẽi to B̃i.

Lemma 4.1. Let p be an odd prime and g ∈ Z×
p a topological generator.

Then

1 − gψg : Ω∞ Ẽi −→ Ω∞ Ẽi

is a homotopy equivalence for i = 0, 1, . . . , p − 3, but not for i = p − 2.

Proof. It suffices to prove that the induced map on spectrum homology

(1 − gψg)∗ : Hspec
∗ (Ẽi) −→ Hspec

∗ (Ẽi)

is an isomorphism for each i �= p − 2. The homology of Ẽi is one copy
of Zp in each degree 2n with n ≡ i(mod p − 1) and zero in other degrees.
Indeed, the wedge product Ẽ0 ∨ . . . ∨ Ẽ p−2 is the p-complete suspension
spectrum of BS1, so

Hspec
∗

(
Ẽ0 ∨ · · · ∨ Ẽ p−2

) = Hspec
∗

(
(Σ∞BS1)∧p

) = H∗
(
BS1;Zp

)
,

a copy of Zp in each even degree. On the other hand, it follows from (4.2)
that

ψω(l) ◦ ei = ω(li)ei,

so that ψω(l) induces multiplication by ω(li) on Hspec
2n (Ẽi) for all n. But ψω(l)

induces multiplication by ω(l)n on H2n(BS1;Zp). Thus ω(ln) = ω(li) on
Hspec

2n (Ẽi), and n ≡ i(mod p − 1).
The map 1 − gψg induces multiplication by 1 − gn+1 on H2n(BS1;Zp)

and 1 − gn+1 is a p-adic unit precisely when n �≡ −1(mod p − 1). "�
As an immediate consequence of Theorem 1.2 and Theorem 2.5 we

have:

Theorem 4.2. The map(
Z× BΓ+

∞
)∧

p

τ∞−→ Q
(
BS1

+
)∧

p

proj−→ Ω∞E0 × . . . × Ω∞E p−3,

with Ω∞E0 = Q(S0)(p) × Ω∞ Ẽ0, is split surjective as a map of infinite
loop spaces.
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4.2. Old and new homology of BΓ+∞

We first describe the relationship between the classes κi ∈ H2i(BΓ+∞;Q),
cf. (1.4), and the map τ∞ = ω∞◦α∞ from Z× BΓ+∞ to Q(BS1+). Restricting
to the zero component and projecting onto Q(BS1) we get

τ̃∞ : BΓ+
∞ −→ Q(BS1).

We compose with (L − 1)∧, cf. (4.4).

Theorem 4.3. The composition

(L − 1)∧ ◦ τ̃∞ : BΓ+
∞ −→ BU

in cohomology maps the integral Chern character class i!chi to κi .

Proof. Let i : BS1 → Q(BS1) be the inclusion. The image of

(L − 1)∧∗ ◦ i∗ : H∗(BS1;Z) −→ H∗(BU;Z)
define polynomial generators ai in degree 2i of H∗(BU;Z), and i!chi
is the unique primitive element of the Hopf algebra H∗(BU;Z) with
< i!chi, ai >= 1. Denote also by ai the corresponding element of
H∗(Q(BS1);Z). Since

(L − 1)∧∗ : H∗(Q(BS1);Z)/torsion
�−→ H∗(BU;Z),

we get in particular that

((L − 1)∧)∗(i!chi) ∈ H2i(Q(BS1);Q)
is the unique primitive element that evaluates to +1 on ai . The cohomology
suspension,

σ∗ : H∗(BS1;Z) −→ H∗(Q(BS1);Z),
induced from the evaluation maps Ss ∧ Ωs Ss(BS1) → Ss ∧ BS1, sends
xi ∈ H2i(BS1;Q), x = c1(L), into a primitive element with the same
evaluation property, so

σ∗(xi) = ((L − 1)∧)∗(i!chi).

In view of (2.13) and (2.15), it suffices to show that the transfer map of (1.6)
composed with the classifying map T v for T vE,

B+
trf(π)−→ Q(E+)

Q(T v+)−→ Q
(
BS1

+
)
,

pulls back σ∗(xi) to κi of (1.1), or equivalently that the adjoint

Σ∞B+ −→ Σ∞E+
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maps c1(T v(E)i) to κi . This follows because we have the factorization

Sk ∧ B+ −→ Th(NvE)
ω−→ Th(NvE ⊕ T vE) = Sk ∧ E+

from (1.5) and because

ω∗(Σk(α)) = U.α.c1(T
vE), α ∈ H∗(E)

where U is the Thom class of Th(NvE). "�
Corollary 4.4. The map α∞ : Z × BΓ+∞ → Ω∞CP∞

−1 is an isomorphism
on homotopy groups in dimensions ∗ ≤ 2.

Proof. Recall the fibration (1.7)

Ω∞CP∞
−1

ω∞−→ Q
(
BS1

+
) ∂−→ Q(S−1).

Using known values of π∗(Q0(S0)) in low dimensions and the fact that the
restriction of ∂ to QS0 is induced from the stable Hopf map η one gets

πi
(
Ω∞CP∞

−1

) = Z, 0,Z,Z/24 for i = 0, 1, 2, 3,

and hence the first non-zero homology groups:

Hi
(
Ω∞CP∞

−1

) = Z,Z/24 for i = 2, 3.(4.5)

By Lemma 2.6, α∞ is an isomorphism on components, and as both spaces
have simply connected components it is trivally an isomorphism on funda-
mental groups. In degree 2 the homotopy exact sequence of the fibration of
zero components,

0 −→ π2
(
Ω∞

0 CP∞
−1

) −→ π2
(
Q0

(
BS1

+
)) −→ π3

(
Q0(S

0)
) −→ 0

is

0 −→ Z −→ Z/2 ⊕ Z −→ Z −→ 0

and the middle Z/2, generated by η2, maps non-trivially. Hence

π2
(
Ω∞

0 CP∞
−1

) ω∞−→ π2
(
Q0

(
BS1

+
)) L̂−→ π2(BU)

is multiplication by 12, and 1
12ω

∗∞ L̂∗(c1) ∈ H2(Ω∞
0 CP∞

−1) is the generator.
Since H2(BΓ∞) = Z it follows from Proposition 4.3 that H2(α∞) is

an isomorphism if and only if κi ∈ H2(BΓ∞) is divisible precisely by
12. This follows from [H1]. Indeed Harer describes the generator as the
homomorphism

Ω2(BΓ∞) −→ Z
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that to a bordism class [M2 f→ BΓ∞] associates 1
4sign (W ) where F →

W
π→ M2 is the induced surface bundle and sign(W ) is the signature of W .

The index formula gives

sign (W ) = <
1

3
p1(TW ), [W] > = 1

3
<

∫
F

p1(TW ), [M] > .

Since TW = T vW ⊕ π∗TM is the sum of two complex line bundles,

p1(TW ) = c1(T
vW )2 + π∗c1(TM)2 = c1(T

vW )2

and
∫

F p1(TW ) = κ1, cf. (1.1). This completes the argument. "�
The homological structure of Q(BS1+) is completely known. The original

source is [DL], but [CLM] might be a better reference.
Consider sequences I = (ε1, s1, . . . , εk, sk) of non-negative integers

with

ε j ∈ {0, 1}, s j ≥ ε j, ps j − ε j ≥ s j−1,

and define

e(I ) = 2s1 − ε1 −
k∑

j=2

(2s j(p − 1) − ε j),

b(I ) = ε1, d(I ) =
k∑

j=1

(2s j(p − 1) − ε j).

For any infinite loop space X and each I there is a homology operation

QI : Hq(X;Z/p) −→ Hq+d(I )(X;Z/p)

which can be non-zero only if e(I )+ b(I ) ≥ q. The homology of Q(BS1+)
can be described in terms of the homology operations, applied to H∗(BS1;
Z/p) ⊂ H∗(Q(BS1+);Z/p). Indeed, if

T = {
QI aq

∣∣ q ≥ 0, e(I )+ b(I ) > 2q
}
,

then

H∗
(
Q

(
BS1

+
);Z/p

) = S∗(T ) ⊗ Z/p[Z],(4.6)

where S∗(T ) denotes the free graded commutative algebra generated by T ,
i.e. a tensor product of the polynomial algebra on the even dimensional
generators and the exterior algebra on the odd dimensional generators, cf.
[CLM; p. 42]. By definition

H∗
(
Ω∞E0 × . . .Ω∞E p−3

) = (1 − ep−2)∗H∗
(
Q

(
BS1

+
))
,

and Theorem 4.2 together with (4.6) proves
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Corollary 4.5. The mod p homology H∗(BΓ+∞;Z/p) contains the free com-
mutative algebra S∗(T ′) where

T ′ = {
QI aq ∈ T

∣∣q �= −1 (mod p − 1)
}
. "�

The Bockstein structure of H∗(Q(BS1+);Z/p) is completely known,
see e.g. Theorem 4.13 of [CLM; p. 49]. This implies the structure of
H∗(Q(BS1+);Zp), and hence (1 − ep−2)∗H∗(Q(BS1+);Zp), giving a huge
collection of new p-torsion classes in H∗(BΓ+∞;Z).

4.3. Formula (1.11) and the proof of Theorem 1.3

The proof is based upon results from [MS] where the fibration sequence of
(1.7),

Ω∞CP∞
−1

ω∞−→ Q
(
BS1

+
) ∂−→ Q(S−1),

is examined in considerable detail after localization (or completion) at any
prime p.

The bundle −Ls over CPs has complex dimension s. Let λ−Ls denote
the standard K -theory Thom class. The elements

Lsλ−Ls ∈ K̃(Th(−Ls))

fit together to define a map

η′ : Ω∞CP∞
−1 −→ Z× BU.

Diagram (6.8) of [MS] implies for every prime p the following map of
fibration sequences

Q(S−2) −−−→ Ω∞CP∞
−1 −−−→ Q

(
BS1+

) −−−→ Q(S−1)

Ω2(eC)

� η′
� l′

� Ω(eC)

�
Ω2(imJC) −−−→ (Z× BU)(p)

1−gψg−−−→ (Z× BU)(p) −−−→ Ω(imJC).

(4.7)

As in previous sections g ∈ Z is chosen so that it generates (Z/p2)×
multiplicatively when p > 2 and g = 3 when p = 2. The space imJC is the
homotopy fiber of 1 − ψg acting on Z× BU , and l′ is the composition

l′ : Q
(
BS1

+
) L̂−→ Z× BU

Ω2(ρg−1)−→ (Z× BU)(p)

where

ρg : K(X) −→ 1 + K̃(X;Z(p))

is the “cannibalistic characteristic class” that on a line bundle L is given by

ρg(L) = 1

g

(
Lg − 1

L − 1

)
.
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Remark. Let F → E → B be a smooth oriented surface bundle classified
by f : B → BΓ∞. Then η′ ◦ α∞ ◦ f : B → Z× BU classifies the element
π!(T vE) where π! : K(E) → K(B) is the push forward map with respect
to the standard Thom class and T vE is viewed as a complex line bundle.

Let Bi be the i-th Bernoulli number in the classical notation used in
[A2]; B1 = 1

6 .

Theorem 4.6. In H∗(BΓ∞;Q),

(η′ ◦ α∞)∗((2i − 1)! ch2i−1) = (−1)i Bi

2i
κ2i−1.

Proof. Let p be any prime and choose g as above. It follows from Theo-
rem 5.18 of [A2] that

π4i(ρ
g − 1) : π4i(BU) −→ π4i(BU(p))

multiplies by (−1)i−1(g2i − 1) Bi
2i . Since

π4i−2(1 − gψg) : π4i−2(BU) −→ π4i−2(BU(p))

multiplies by 1−g2i , diagram (4.7) and Theorem 4.3 give the stated equation
multiplied by (1 − g2i), and hence the required formula. "�
Remark. It appears that the family index theorem for the fibrewise ∂̄ operator
on a smooth oriented surface bundle will show that η � η′ ◦ α∞, where

η : BΓ+
∞ −→ BSp(R)

(cf. 1.11). The map η factors through BSp(Z)+. We do not know at present
if η′ factors through BSp(Z)+, but hope to return to these questions in the
future.

The maps η′ and l′ are not split surjections, not even rationally. However,
in Theorem 6.3 of [MS] it was shown how to rechoose the maps when the
prime p is odd to get a diagram with split surjective maps:

Ω∞(
CP∞

−1

)∧
p

ω∞−−−→ Q
(
BS1+

)∧
p

∂−−−→ Q(S−1)∧p
l−1

� l0

� Ω(eC)

�
(Z× BU)∧p

1−gψg−−−→ (Z× BU)∧p −−−→ Ω(imJ)∧p

(4.8)

It is easy to see that the (2s + 2)-dimensional skeleton of Th(−Ls) is the
mapping cone of the Hopf map η : S2s+1 → S2s which for s > 1 has order 2.
At odd primes there results a map from S2s+2 into Th(−Ls), and hence

Q(S0)(p) −→ (
Ω∞CP∞

−1

)
(p)

.
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As argued before in the proof of Lemma 2.6, the composition

Q(S0)(p) −→ (
Ω∞CP∞

−1

)
(p)

ω∞−→ Q
(
BS1

+
)
(p)

proj1−→ Q(S0)(p)

is twice the identity. We divide out the factor Q(S0)(p) to get a reduced
version of the above fibration,

(
Ω∞CP∞

−1/S0)
(p)

ω̃∞−→ Q(BS1)(p)
∂−→ Q(S−1)(p).

We have the following reduced version of (4.8).

Ω∞(
CP∞

−1/S0
)∧

p

ω̃∞−−−→ Q(BS1)∧p −−−→ Q(S−1)∧p

l̃−1

� l̃0

� (ΩeC)

�
BU∧

p
1−gψg−−−→ BU∧

p −−−→ Ω(imJ)∧p .

(4.9)

Here l̃0 is (L − 1)∧ composed with Ω2(h), where

h = e0(ρ
g − 1) + (1 − e0)(1 − ψg)

with e0 the idempotent considered in Theorem 4.1. The map h is a homo-
topy equivalence. This follows by the results of [A2] used in the proof of
Theorem 6.4.

It is well-known that

(L − 1)∧ : Q(BS1) −→ BU

is split by a map

λ : BU −→ Q(BS1)

(see [S2] or [MS, §5, §7]). The map λ can be delooped once but is not an
infinite loop map. It has the property that

BS1 L−1−→ BU
λ−→ Q(BS1)

is homotopic to the standard inclusion.

Lemma 4.7. The composition

ϕg : BU∧
p

λ−→ Q(BS1)∧p
Q(ψg)−→ Q(BS1)∧p

(L−1)∧−→ BU∧
p

is homotopic to ψg.
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Proof. The diagram

BU∧
p

λ−−−→ Q(BS1)∧p
Q(ψg)−−−→ Q(BS1)∧p

(L−1)∧−−−−→ BU∧
p

L−1

� incl

� incl

� L−1

�
BS1 BS1 ψg−−−→ (BS1) (BS1)

is homotopy commutative. Since the image of H∗(BS1;Z) in H∗(BU;Z)
under (L − 1)∗ is a set of algebra generators, and ϕg is a loop map

ψg = ϕg : H∗(BU;Z) −→ H∗(BU;Z).
The obvious map

[BU, BU] −→ Hom(H∗(BU;Q); H∗(BU;Q))(4.10)

is injective (see e.g. Lemma 7.3 of [MS]), so ψg � ϕg as claimed. "�
We now complete the proof of Theorem 1.3 by showing that the com-

position

β : BU∧
p

λ−→ Q(BS1)∧p
µ̂p−→ (

BΓ+
∞

)∧
p

α̃∞−→ Ω∞(
CP∞

−1/S0)∧
p

l̃−1−→ BU∧
p

is a homotopy equivalence. This in turn is a consequence of the homotopy
commutative diagram

(
BΓ+∞

)∧
p

α̃∞−−−→ Ω∞(
CP∞

−1/S0
)∧

p

l̃−1−−−→ BU∧
p

µ̂p

� ω̃∞
� 1−gψg

�
Q(BS1)∧p

1−gψg−−−→ Q(BS1)∧p
l̃0−−−→ BU∧

p

λ

� (L−1)∧
� ∥∥∥

BU∧
p

1−gψg−−−→ BU∧
p

Ω2(h)−−−→ BU∧
p,

which shows that (1 − gψg) ◦ β � Ω2(h) ◦ (1 − gψg). Since (1 − gψg)
is non-zero on all homotopy groups, β and Ω2(h) induce the same map
on homotopy groups. It follows that β and Ω2(h) induce the same map
on rational homology and so are homotopic by (4.10). Since Ω2(h) is
a homotopy equivalence, so is β. "�
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