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The stable mapping class group is the group of isotopy classes of automorphisms of
a connected oriented surface of “large” genus. The Mumford conjecture postulates
that its rational cohomology is a polynomial ring generated by certain classes κi of
dimension 2i, for i > 0. Tillmann’s insight [38] that the plus construction makes
the classifying space of the stable mapping class group into an infinite loop space
led to a stable homotopy theory version of Mumford’s conjecture, stronger than
the original [25]. This stronger form of the conjecture was recently proved by Ib
Madsen and myself [26]. I will describe some of the ideas which led to the proof, and
some retrospective thoughts, rather than trying to condense large portions of [26].

1. The stable mapping class group and stable homotopy theory

Let Fg,b be a connected, compact, oriented smooth surface of genus g with b bound-
ary circles (and no “punctures”). The topological group of smooth orientation
preserving automorphisms of Fg,b which restrict to the identity on ∂Fg,b will be
denoted by Diff(Fg,b; ∂). The mapping class group of Fg,b is

Γg,b = π0Diff(Fg,b; ∂) .

A fundamental result of Earle, Eells and Schatz [8], [9] states that the discrete
group Γg,b is homotopy equivalent to Diff(Fg,b; ∂) in most cases. More precisely:

Theorem 1.1. If g > 1 or b > 0, then the identity component of Diff(Fg,b; ∂) is
contractible.

It is often convenient to assume that each boundary circle of Fg,b comes equipped
with a diffeomorphism to the standard circle S1. Where this is orientation pre-
serving, the boundary circle is considered to be outgoing, otherwise incoming. It is
customary to write

b1 + b2

instead of b, to indicate that there are b1 incoming and b2 outgoing boundary circles.
A particularly important case is Fg,1+1. By gluing outgoing to incoming boundary
circles, we obtain homomorphisms

(1) Γg,1+1 × Γh,1+1 −→ Γg+h,1+1 .

They determine a multiplication on the disjoint union of the classifying spaces
BΓg,1+1 for g ≥ 0, so that the group completion

ΩB
( ∐

g

BΓg,1+1

)
is defined. As is often the case, the group completion process can be replaced by
a plus construction [1]. Namely, taking h = 1 in display (1) and using only the
neutral element of Γh,1+1 leads to stabilization homomorphisms Γg,1+1 → Γg+1,1+1.
We write Γ∞,1+1 = colimg Γg,1+1. This is the stable mapping class group of the
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title. It is a perfect group; in fact Γg,b is perfect for g ≥ 3. Let BΓ+
∞ be the result

of a plus construction on BΓ∞,1+1.

Proposition 1.2. ΩB
(∐

g BΓg,1+1

)
' Z×BΓ+

∞.

The proof uses the group completion theorem, see [1], which concerns the effect of
a group completion on homology. As the referee pointed out to me, the verification
of the hypotheses in the group completion theorem is not a trivial matter in the
present case. It relies on the homological stability theorem of Harer [17] which we
state next, with the improvements due to Ivanov [20], [21].

Theorem 1.3. Let S be an oriented surface, S = S1∪S2 where S1∩S2 is a union of
finitely many smooth circles in the interior of S. If S1

∼= Fg,b and S ∼= Fh,c, then the
inclusion-induced homomorphism H∗(BΓg,b; Z)→ H∗(BΓh,c; Z) is an isomorphism
for ∗ < g/2− 1.

The homological stability theorem is a very deep theorem with impressive appli-
cations, some of them much more surprising than proposition 1.2. A particularly
surprising application is Tillmann’s theorem [38]:

Theorem 1.4. Z×BΓ+
∞ is an infinite loop space.

Theorems 1.1 and 1.3 imply that the cohomology of BΓ+
∞ is a receptacle for charac-

teristic classes of surface bundles, with fibers of “large” genus. Following Mumford,
Miller and Morita we now use this point of view to construct elements in the coho-
mology of BΓ+

∞.
With the hypotheses of theorem 1.1. let E → B be any Fg,b–bundle with oriented
fibers and trivialized boundary bundle ∂E → B, that is, each fiber of ∂E → B is
identified with a disjoint union of b standard circles. The vertical tangent bundle
TBE of E is a two-dimensional oriented vector bundle, trivialized near ∂E, with
Euler class e = e(TBE) ∈ H2(E, ∂E; Z). Let

κi ∈ H2i(B; Z)

be the image of ei+1 ∈ H2i+2(E, ∂E; Z) under the Gysin transfer map, also known
as integration along the fibers,

(2) H2i+2(E, ∂E; Z) −→ H2i(B; Z) .

The κi are, up to a sign, Mumford’s characteristic classes [31] in the description
of Miller [27] and Morita [28], [29]. By theorem 1.1, the universal choice of B is
BΓg,b and we may therefore regard the κi as classes in the cohomology of BΓg,b.
For i > 0, they are compatible with respect to homomorphisms Γg,b → Γh,c of the
type considered in theorem 1.3 and we may therefore write

κi ∈ H2i(BΓ∞,1+1; Z) .

1.5. Mumford’s conjecture [31], now a theorem:

H∗(BΓ∞,1+1; Q) = Q[κ1, κ2, . . . ] ,

i.e., the classes κi ∈ H2i(BΓ∞,1+1; Q) are algebraically independent and generate
H∗(BΓ∞,1+1; Q) as a Q-algebra.
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The algebraic independence part was very soon established by Miller [27] and Morita
[28], [29]. About fifteen years later, after Tillmann had proved theorem 1.4, it was
noticed by Madsen and Tillmann [25] that the Miller-Morita construction of the
Mumford classes κi provides an important clue as to “which” infinite loop space
Z × BΓ+

∞ might be. Assume for simplicity that b = 0 in the above and that B is
finite dimensional. A choice of a fiberwise smooth embedding E → B × R2+n over
B, with n� 0, leads to a Thom-Pontryagin collapse map of Thom spaces,

(3) Th (B × R2+n) −→ Th (T⊥B E) ,

where T⊥B E is the fiberwise normal bundle of E in B × R2+n. It is well known
that (3) induces the Gysin transfer (2), modulo the appropriate Thom isomor-
phisms. Let now Gr2(R2+n) be the Grassmannian of oriented 2-planes in R2+n and
let Ln, L⊥n be the canonical vector bundles of dimension 2 and n on Gr2(R2+n),
respectively. Composing (3) with the tautological map Th (T⊥B E)→ Th (L⊥n ) gives
Th (B × R2+n) −→ Th (L⊥n ) and hence by adjunction B → Ω2+nTh (L⊥n ), and
finally in the limit

(4) B −→ Ω2+∞Th (L⊥∞)

where Ω2+∞Th (L⊥∞) = colimn Ω2+nTh (L⊥n ). At this stage we can also allow an
infinite dimensional B, in particular B = BΓg with the universal Fg–bundle. The
case BΓg,b can be dealt with by using a homomorphism Γg,b → Γg of the type
considered in 1.3. In this way, (4) leads to a map

(5) α∞ : Z×BΓ+
∞ −→ Ω2+∞Th (L⊥∞).

It is easy to recover the MMM characteristic classes κi by applying (5) to certain
classes κ̄i in the cohomology of Ω2+∞Th (L⊥∞). Namely, choose n � i and let κ̄i

be the image of (e(Ln))i+1 under the composition

H2i+2(Gr2(R2+n); Z) u−−−−→ H2i+2+n(Th (L⊥n ); Z) Ω2+n

−−−−→ H2i(Ω2+nTh (L⊥n ); Z)
where u is the Thom isomorphism. Since n� i, we have

H2i(Ω2+nTh (L⊥n ); Z) ∼= H2i(Ω2+∞Th (L⊥∞); Z).

1.6. Madsen’s integral Mumford conjecture [25], now a theorem: The map
α∞ is a homotopy equivalence.

Tillmann and Madsen noted in [25] that this would imply statement 1.5. They
showed that α∞ is a map of infinite loop spaces, with the Ω∞ structure on Z×BΓ+

∞
from theorem 1.4, and used this fact to prove a p–local refinement of the Miller–
Morita result on the rational independence of the classes κi, for any prime p. In the
meantime Galatius [11] made a very elegant calculation of H∗(Ω2+∞Th (L⊥∞); Z/p).

2. Submersion theory and the first desingularization procedure

Let X be any smooth manifold. By Thom–Pontryagin theory, homotopy classes of
maps X → Ω2+∞Th (L⊥∞) are in bijective correspondence with bordism classes of
triples (M, q, q̂) where M is smooth, q : M → X is proper, and

q̂ : TM × Rn → q∗TX × Rn

is a vector bundle surjection with a 2-dimensional oriented kernel bundle, for some
n. (The correspondence is obtained by making pointed maps from Th (X ×Rn) to
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Th (L⊥n ) transverse to the zero section of L⊥n ; the inverse image of the zero section
is a smooth M equipped with data q and q̂ as above.) The triples (M, q, q̂) are best
memorized as commutative squares

(6)

TM × Rn q̂−−−−→ TX × Rny y
M

q−−−−→ X

with q̂ written in adjoint form.
In particular, any bundle of closed oriented surfaces q : M → X determines a triple
(M, q, q̂) with q̂ equal to the differential of q, hence a homotopy class of maps from
X to Ω2+∞Th (L⊥∞). This is the fundamental idea behind (5). From this angle,
statement 1.6 is a “desingularization” statement. More precisely, it is equivalent to
the following:

For fixed i and sufficiently large g, every oriented i–dimensional bordism class of
the degree g component of Ω2+∞Th (L⊥∞) can be represented by an Fg–bundle on a
closed smooth oriented i-manifold; such a representative is unique up to an oriented
bordism of Fg-bundles.

The translation uses theorem 1.3 and the fact that a map between simply connected
spaces is a homotopy equivalence if and only if it induces an isomorphism in the
generalized homology theory “oriented bordism”.

Let (M, q, q̂) be a triple as above, so that q : M → X is a proper smooth map and
q̂ : TM → q∗TX is a stable vector bundle surjection with 2–dimensional oriented
kernel. If q̂ happens to agree with the differential dq of q, then q is a proper sub-
mersion, hence a surface bundle by Ehresmann’s fibration theorem [4]. In general
it is not possible to arrange this by deforming the pair (q, q̂). One must settle for
less. The approach taken in [26] is as follows.
Suppose for simplicity that X is closed. Let E = M × R and let πE : E → X be
the composition E → M → X. By obstruction theory, q̂ deforms to an honest
surjection

π̂E : TE −→ π∗ETX

of vector bundles on E, with kernel of the form V ×R, where V is a 2–dimensional
oriented vector bundle on E. Writing π̂E in adjoint form, we can describe the
situation by a commutative square

(7)

TE
π̂E−−−−→ TXy y

E
q−−−−→ X .

By submersion theory [32], which is applicable here because E is an open manifold,
the pair (πE , π̂E) deforms to a pair (π, π̂) where π : E → X is a smooth submersion
with differential dπ = π̂. See also section 3 below. The kernel of dπ : TE → π∗TX
is still of the form V × R with 2–dimensional oriented V . In addition, we have a
proper map f : E → R, the projection.

The “first desingularization” procedure (M, q, q̂)  (E, π, f) is an important con-
ceptual step. If we forget or ignore the product structure E ∼= M × R, we can still
recover (M, q, q̂) from (E, π, f) up to bordism by forming (N,π|N, dπ| . . . ), where
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N = f−1(c) for a regular value c of f . Let us now see how this reverse procedure
reconstitutes the singularities.

Lemma 2.1. For z ∈ N with π(z) = x, the following are equivalent:
• π|N is nonsingular at z;
• f |Ex is nonsingular at z, where Ex = π−1(x).

The following are also equivalent:
• π|N has a fold singularity at z;
• f |Ex has a Morse singularity at z.

Proof. Let T, V and H be the (total spaces of the) tangent bundle of E, the vertical
subbundle (kernel of dπ) and the horizontal quotient bundle, respectively, so that
H = T/V . Let K be the tangent bundle of N . We are assuming that df : Tz → R
is onto, since f(z) = c is a regular value. Hence df |Vz is nonzero if and only if Kz

is transverse to Vz in Tz, which means that the projection Kz → Hz is onto. This
proves the first equivalence.
Suppose now that df |Vz is zero. By definition, π|N has a fold singularity at z if
the differential Kz → Hz has corank 1 and the “second derivative” of π|N , as a
well defined symmetric bilinear map Q from ker(Kz → Hz) to coker(Kz → Hz),
is nondegenerate. In our situation, ker(Kz → Hz) = Vz and coker(Kz → Hz) is
canonically identified, via dπ, with Tz/Kz and hence via df with R. Using local
coordinates near z, it is not difficult to see that the second derivative of f |Ex at z,
regarded as a well defined symmetric bilinear map from Vz to R, is equal to −Q.
Hence z is a nondegenerate critical point for f |Ex if and only if π|N has a fold
singularity at z. �

These ideas also steer us away from a bordism theoretic approach and towards a
description of Ω2+∞Th (L⊥∞) in terms of “families” of 3–manifolds.

Proposition 2.2. The space Ω2+∞Th (L⊥∞) is a classifying space for “families” of
oriented 3–manifolds without boundary, equipped with a proper smooth map to R
and an everywhere nonzero 1–form.

To be more precise, the families in question are parametrized by a smooth manifold
without boundary, say X. They are smooth submersions π : E → X with oriented
3–dimensional fibers. The additional data are: a smooth f : E → R such that
(π, f) : E → X × R is proper, and a vector bundle surjection from ker(dπ), the
vertical tangent bundle of E, to a trivial line bundle on E.
Two such families on X are concordant if their disjoint union, regarded as a family
on X × {0, 1}, extends to a family of the same type on X × R. The content of
proposition 2.2 is that the set of concordance classes is in natural bijection with
the set of homotopy classes of maps from X to Ω2+∞Th (L⊥∞). Note that both sets
depend contravariantly on X.

Remark 2.3. When using proposition 2.2, beware that most smooth submersions
are not bundles. For example, the inclusion of Rr{0} in R and the first coordinate
projection from R2 r{0} to R are smooth submersions. Proposition 2.2 is therefore
still rather far from being a description of Ω2+∞Th (L⊥∞) in terms of manifold
bundles. But it is a start, and we will complement in the following sections with
methods for improving submersions to bundles or decomposing submersions into
bundles.
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Remark 2.4. There exists another formulation of proposition 2.2 in which all 3–
manifolds in sight have a prescribed boundary equal to {0, 1} × R × S1. This is
more suitable where concatenation as in (1) matters. But since the equivalence of
the two formulations is easy to prove, there is much to be said for working with
boundariless manifolds until the concatenation issues need to be addressed.

3. More h–principles and the second desingularization procedure

Let M,N be smooth manifolds without boundary, z ∈ M . A k–jet from M to N
at z is an equivalence class of smooth maps f : M → N , where two such maps are
considered equivalent if they agree to k–th order at z. Let Jk(M,N)z be the set of
equivalence classes and let

Jk(M,N) =
⋃
z

Jk(M,N)z.

This has the structure of a differentiable manifold. The projection Jk(M,N)→M
is a smooth bundle. Every smooth function f : M → N determines a smooth section
jkf of the jet bundle Jk(M,N) → M , the k–jet prolongation of f . The value of
jkf at z ∈M is the k–jet of f at z.
A smooth section of Jk(M,N) → M is integrable or holonomic if it has the form
jkf for some smooth f : M → N . Most smooth sections of Jk(M,N) → M are
not integrable. Nevertheless there exists a highly developed culture of integrability
theorems up to homotopy, so–called h–principles [14], [10]. Such a theorem typically
begins with the description of an open subbundle A→M of Jk(M,N)→M , and
states that the inclusion of the space of integrable sections of A→M into the space
of all sections of A→M is a homotopy equivalence. (For us the cases where k = 1
or k = 2 are the most important.)

The relevance of these notions to the Mumford–Madsen project is clear if we adopt
the bordism–free point of view developed in section 2. Consider a single oriented
smooth 3–manifold E with a proper smooth f : E → R and an everywhere nonva-
nishing 1–form, as in proposition 2.2. The map f and the 1–form together define
a section of the jet bundle J1(E, R). If this is integrable, then f is a proper sub-
mersion. Hence f : E → R is a bundle of oriented surfaces, again by Ehresmann’s
fibration theorem. The argument goes through in a parametrized setting: a family
as in 2.2, parametrized by X, is a surface bundle on X × R provided it satisfies
the additional condition of integrability. From this point of view, statement 1.6 is
roughly an h–principle “up to group completion”. (It is unusual in that the source
manifolds are allowed to vary.)

Examples 3.1 and 3.2 below are established h–principles. The h–principle of theo-
rem 3.4 is closely related to a special case of 3.2 and at the same time rather similar
to statement 1.6.

Example 3.1. An element in J1(M,N) can be regarded as a triple (x, y, g) where
(x, y) ∈ M × N and g is a linear map from the tangent space of M at x to the
tangent space of N at y. Let U1 ⊂ J1(M,N) consist of the triples (x, y, g) where
g is injective and let U2 ⊂ J1(M,N) consist of the triples (x, y, g) where g is
surjective. Let Γ(U1), Γ(U2) be the section spaces of the bundles U1 → M and
U2 →M , respectively. Let Γitg be the space of integrable (alias holonomic) sections
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of J1(M,N) → M . Note that Γitg ∩ Γ(U1) is identified with the space of smooth
immersions from M to N , and Γitg ∩ Γ(U2) is identified with the space of smooth
submersions from M to N . One of the main results of immersion theory [36], [18]
is the statement that the inclusion

Γitg ∩ Γ(U1) −→ Γ(U1)

is a homotopy equivalence if dim(M) < dim(N). The main result of submersion
theory [32] is that the inclusion

Γitg ∩ Γ(U2) −→ Γ(U2)

is a homotopy equivalence if M is an open manifold. Gromov’s 1969 thesis, outlined
in [15], develops a general method for proving these and related h–principles using
sheaf–theoretic arguments. This has become the standard. Much of it is reproduced
in [14, §2.2]. See also [16] and [10].

Example 3.2. Fix positive integers m,n, k. Let A be a closed semialgebraic subset
[3] of the vector space Jk(Rm, Rn). Suppose that A is invariant under the right
action of the group of diffeomorphisms Rm → Rm, and of codimension ≥ m + 2 in
Jk(Rm, Rn). Fix a smooth m–manifold M and let A(M) ⊂ Jk(M, Rn) consist of
the jets which, in local coordinates about their source, belong to A. Let Γ be the
space of smooth sections of Jk(M, Rn)→M , let Γitg ⊂ Γ consist of the integrable
sections, and let Γ¬A ⊂ Γ consist of the sections which avoid A(M). Note that
Γitg ∩ Γ¬A is identified with the space of smooth maps from M to Rn having no
singularities of type A. Vassiliev’s h–principle [40, Thm 0.A], [39, III,1.1] states
among other things that the inclusion

Γitg ∩ Γ¬A −→ Γ¬A

induces an isomorphism in integral cohomology. (There is also a relative version
in which M is compact with boundary.) If the codimension of A is at least m + 3,
then both Γitg ∩Γ¬A and Γ¬A are simply connected; it follows that in this case the
inclusion map is a homotopy equivalence.
Vassiliev’s proof of this h–principle is meticulously and admirably organized, but
still not easy to read. As far as I can see, it is totally different from anything
described in [14] or [10]. An overview is given in section A.

In theorem 3.4 below, we will need an analogue of proposition 2.2. Let GrW(R3+n)
be the space of 3–dimensional oriented linear subspaces V ⊂ R3+n equipped with
a certain type of map q + ` : V → R. Here q is a quadratic form, ` is a linear form,
and we require that q be nondegenerate if ` = 0. Denote by

UW,n , U⊥
W,n

the tautological 3–dimensional vector bundle on GrW(R3+n) and its n–dimensional
complement, respectively, so that UW,n⊕U⊥

W,n is a trivial vector bundle with fiber
R3+n. Let

Ω2+∞Th (U⊥
W,∞) = colimn Ω2+nTh (U⊥

W,n) .
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Proposition 3.3. The space Ω2+∞Th (U⊥
W,∞) is a classifying space for “families”

of oriented smooth 3–manifolds Ex without boundary, equipped with a section of
J2(Ex, R) → Ex whose values are all of Morse type, and whose underlying map
fx : Ex → R is proper.

Some details: An element of J2(Ex, R) is, in local coordinates about its source
z ∈ Ex, uniquely represented by a function of the form q + ` + c : R3 → R where
q is a quadratic form, ` is a linear form and c is a constant. It is of Morse type if
either ` 6= 0 or q is nondegenerate.
The families in question are smooth submersions π : E → X where each fiber Ex is
a 3–manifold with the structure and properties described in proposition 3.3. The
content of proposition 3.3 is that the set of concordance classes of such families
on X is in natural bijection with the set of homotopy classes of maps from X
to Ω2+∞Th (U⊥

∞). The proof mainly uses the Thom–Pontryagin construction and
submersion theory, just like the proof of proposition 2.2 sketched in section 2.

Theorem 3.4. The space Ω2+∞Th (U⊥
W,∞) is also a classifying space for “families”

of oriented smooth 3–manifolds without boundary, equipped with a proper smooth
Morse function.

Clearly the simultaneous validity of theorem 3.4 and proposition 3.3 implies some-
thing like an h–principle for proper Morse functions on oriented 3–manifolds without
boundary — the “second desingularization procedure” which appears in the title of
this section. (It can be applied to a family of 3–manifolds Ex as in proposition 2.2;
the smooth function fx and the 1–form together form a section of J1(Ex, R)→ Ex,
which can also be regarded as a section of J2(Ex, R)→ Ex after a choice of riemann-
ian metric on Ex.) But it must be emphasized that variability of the 3–manifolds
is firmly built in. No claim is made for the space of proper Morse functions on a
single oriented 3–manifold without boundary.

Here is an indication of how theorem 3.4 can be deduced from Vassiliev’s h–principle
(example 3.2) and proposition 3.3. It is not hard to show that the concordance
classification of the “families” under consideration remains unchanged if we impose
the Morse condition only at level 0. This means that in theorem 3.4 we may allow
families of oriented smooth 3–manifolds Ex without boundary, equipped with a
proper smooth function Ex → R whose critical points are nondegenerate if the
critical value is 0. In proposition 3.3 we may allow families of oriented 3–manifolds
Ex without boundary, equipped with a section f̂x of J2(Ex, R)→ Ex whose values
are of Morse type whenever their constant term is zero, and whose underlying
map fx : Ex → R is proper. Thus the elements of J2(Ex, R) to be avoided are
those which, in local coordinates about their source, are represented by polynomial
functions R3 → R of degree at most two which have constant term 0, linear term
0 and degenerate quadratic term. These polynomial functions form a subset A of
J2(R3, R) which satisfies the conditions listed in 3.2; in particular, its codimension
is 3+2. Unfortunately Ex is typically noncompact, and depends on x. Nevertheless,
with an elaborate justification one can use Vassiliev’s h–principle here, mainly on
the grounds that the “integration up to homotopy” of a section

f̂x : Ex → J(Ex, R)
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satisfying the above conditions is easy to achieve outside the compact subset f−1
x (0)

of Ex. This leads to a statement saying that two abstractly defined classifying
spaces, corresponding to the two types of “families” being compared, are homol-
ogy equivalent. Since the two classifying spaces come with a grouplike addition
law, corresponding to the disjoint union of families, the homology equivalence is a
homotopy equivalence.

In the next statement, a variation on proposition 3.3, we identify Gr2(R2+n) with
the closed subspace of GrW(R3+n) consisting of the oriented 3–dimensional linear
subspaces V ⊂ R3+n which contain the “first” factor R ∼= {(t, 0, 0, 0, . . . )}, with
q + ` : V → R equal to the corresponding projection. The restriction of U⊥

n to
Gr2(R2+n) is identified with L⊥n . This leads to a cofibration

Th (L⊥n ) −→ Th (U⊥
n ).

In this way Ω2+n(Th (U⊥
n )/Th (L⊥n )) acquires a meaning.

For a smooth Ex and a section of J2(Ex, R) → Ex, let the formal singularity set
consist of the elements in Ex where the associated 2–jet is singular.

Proposition 3.5. The space Ω2+∞(Th (U⊥
∞)/Th (L⊥∞)) is a classifying space for

“families” of oriented smooth 3–manifolds Ex without boundary, equipped with a
section of J2(Ex, R)→ Ex whose values are all of Morse type, and whose underlying
map fx : Ex → R is proper on the formal singularity set.

The proof is similar to the proofs of propositions 2.2 and 3.3.

Theorem 3.6. The space Ω2+∞(Th (U⊥
∞)/Th (L⊥∞)) is also a classifying space for

“families” of oriented smooth 3–manifolds without boundary, equipped with a smooth
Morse function which is proper on the singularity set.

Again, the simultaneous validity of theorem 3.6 and proposition 3.5 implies some-
thing like an h–principle for Morse functions which are proper on their singularity
set, and defined on oriented 3–manifolds without boundary. But this is much easier
than the h–principle implicit in theorem 3.4.
Namely, let π : E → X with f : E → R be a family of the type described in the-
orem 3.6. Thus π is a smooth submersion, f |Ex is Morse for each x ∈ X and
(π, f) : E → X×R is proper on Σ, where Σ ⊂ E is the union of the singularity sets
of all f |Ex. The stability of Morse singularities implies that Σ is a codimension 3
smooth submanifold of E, transverse to each fiber Ex of π. Hence π|Σ is an étale
map from Σ to X, that is, a codimension zero immersion. Choose a normal bundle
N of Σ in E, in such a way that each fiber of N → Σ is contained in a fiber of π. It
is easy to show that the family given by π and f is concordant to the family given
by π|N and f |N . This fact leads to a very neat concordance classification for such
families, and so leads directly to theorem 3.6.

4. Strategic thoughts

For each k ≥ 0, the functor Ωk+∞ converts homotopy cofiber sequences of spectra
into homotopy fiber sequences of infinite loop spaces. Applied to our situation, this
gives a homotopy fiber sequence

Ω2+∞Th (L⊥∞) −→ Ω2+∞Th (U⊥
∞) −→ Ω2+∞(Th (U⊥

∞)/Th (L⊥∞)),
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leading to a long exact sequence of homotopy groups for the three spaces. Combin-
ing this with the main results of the previous section, we obtain a homotopy fiber
sequence

(8) Ω2+∞Th (L⊥∞) −→ |W| ↪→ |Wloc|

where |W| and |Wloc| classify (up to concordance) certain families of oriented
smooth 3–manifolds without boundary, equipped with Morse functions. In the case
of |W|, we insist on proper Morse functions; in the case of |Wloc|, Morse functions
whose restriction to the singularity set is proper. The details are as in theorems 3.4
and 3.6. The spaces |W| and |Wloc| can, incidentally, be constructed directly in
terms of the contravariant functorsW andWloc which to a smooth X associate the
appropriate set of “families” parametrized by X.

There is an entirely different approach to |W| and |Wloc| which eventually leads to
a homotopy fiber sequence

(9) Z×BΓ+
∞ −→ |W| ↪→ |Wloc|,

and so, in combination with (8), to a proof of (1.6). In this approach, |W| and
|Wloc| are seen as stratified spaces. The reasons for taking such a point of view are
as follows.
Let a family of 3–manifolds Ex and proper Morse functions fx : Ex → R as in
theorem 3.4 be given, where x ∈ X. For x ∈ X let Sx be the finite set of critical
points of fx with critical value 0. It comes with a map Sx → {0, 1, 2, 3}, the Morse
index map. We therefore obtain a partition of the parameter manifold X into
locally closed subsets X〈S〉 , indexed by the isomorphism classes of finite sets S
over {0, 1, 2, 3}. Namely, X〈S〉 consists of the x ∈ X with Sx

∼= S. If the family is
sufficiently generic, the partition is a stratification (definition 5.1 below) and X〈S〉
is a smooth submanifold of X, of codimension |S|. At the other extreme we have
the case where X〈S〉 = X for some 〈S〉; then the family is pure of class 〈S〉.
A careful elaboration of these matters results in a stratified model of |W|, with
strata |W〈S〉| indexed by the isomorphism classes 〈S〉 of finite sets over {0, 1, 2, 3},
where |W〈S〉| classifies families (as above) which are pure of class 〈S〉. There is
a compatibly stratified model of |Wloc|. It turns out, and it is not all that hard
to understand, that the strata |W〈S〉| and |Wloc,〈S〉| are also classifying spaces for
certain genuine bundle types. More importantly, the homotopy fibers of the forget-
ful map |W〈S〉| → |Wloc,〈S〉| are classifying spaces for bundles of compact oriented
smooth surfaces with a prescribed boundary which depends on the reference point in
|Wloc,〈S〉|. It is this information, coupled with the Harer stability result, which then
leads to a description of the homotopy fiber of |W| → |W|loc in bundle–theoretic
terms, i.e., to the homotopy fiber sequence (9).

5. Stratified spaces and homotopy colimit decompositions

This section is about a general method for extracting homotopy theoretic informa-
tion from a stratification. In retrospective, the homotopy fiber sequence (9) can be
regarded as an application of that general method.

Definition 5.1. A stratification of a space X is a locally finite partition of X into
locally closed subsets, the strata, such that the closure of each stratum in X is a
union of strata.
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Example 5.2. Let Y be a nonempty Hausdorff space, S a finite set and X = Y S .
Then X is canonically stratified, with one stratum Xη for each equivalence relation η
on S. Namely, u ∈ X belongs to the stratum Xη if sηt⇔ (us = ut) for (s, t) ∈ S×S.
The closure of Xη is the union of all Xω with ω ⊃ η.

Example 5.3. Let X be the space of Fredholm operators H→ H of index 0, where
H is a separable Hilbert space. See e.g. [2]. Then X is stratified, with one stratum
Xn for each integer n ≥ 0. Namely, Xn consists of the Fredholm operators f having
dim(ker(f)) = dim(coker(f)) = n. Here the closure of Xn is the union of all Xm

with m ≥ n.

Definition 5.4. Let X be a stratified space. The set of strata of X becomes a
poset, with Xi ≤ Xj if and only if the closure of Xi in X contains Xj . (Warning :
This is the opposite of the obvious ordering.)

The main theme of this section is that stratifications often lead to homotopy colimit
decompositions. I am therefore obliged to explain what a homotopy colimit is. Let
C be a small category and let

F : C → Spaces

be a functor. The colimit of F is the quotient of the disjoint union
∐

c F (c) obtained
by identifying x ∈ F (c) with g∗(x) ∈ F (d), for any morphism g : c → d in C and
x ∈ F (c). In general, the homotopy type of colim F is somewhat unpredictable. As
a protection against that one may impose a condition on F .

Definition 5.5. A functor F : C → Spaces is cofibrant if, given functors G, G′ from
C to spaces and natural transformations

F
u−−−−→ G

e←−−−− G′

where e : G′(c) → G(c) is a homotopy equivalence for all c in C, there exists a
natural transformation u′ : F → G′ and a natural homotopy h from eu′ to u.

If F,G : C → Spaces are both cofibrant and u : F → G is a natural transformation
such that u : F (c) → G(c) is a homotopy equivalence for each c in C, then the
induced map colim F → colim G is a homotopy equivalence. This follows imme-
diately from definition 5.5. In this sense, colimits are well behaved on cofibrant
functors. With standard resolution techniques, one can show that an arbitrary F
from C to spaces admits a cofibrant resolution; i.e., there exist a cofibrant F ′ from
C to spaces and a natural transformation F ′ → F such that F ′(c) → F (c) is a
homotopy equivalence for every c.

Definition 5.6. For F : C → Spaces with a cofibrant resolution F ′ → F , the
homotopy colimit of F is the colimit of F ′.

Definition 5.6 is unambiguous in the following sense: if F ′ → F and F ′′ → F are
two cofibrant resolutions, then F ′ and F ′′ can be related by natural transformations
v : F ′ → F ′′ and w : F ′′ → F ′ such that vw and wv are naturally homotopic to the
appropriate identity transformations. Hence colimF ′ ' colim F ′′. Of course, there
is always a standard choice of a cofibrant resolution F ′ → F , and this depends
naturally on F . With the standard choice, the following holds:
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Proposition 5.7. The homotopy colimit of F is naturally homeomorphic to the
classifying space of the transport category C∫F of F . This has object space

∐
c F (c)

and morphism space ∐
c,d

F (c)×morC(c, d) ,

so that a morphism from x ∈ F (c) to y ∈ F (d) is an element g ∈ morC(c, d) for
which g∗(x) = y.

In particular, if F (c) is a singleton for every c in C, then the transport category
determined by F is identified with C itself, and so the homotopy colimit of F is
identified with the classifying space of C.
Another special case worth mentioning, because it is well known, is the Borel con-
struction. Let Y be a space with an action of a group G. The group is a category
with one object, and the group action determines a functor from that category to
spaces. In this case the homotopy colimit is the Borel construction alias homotopy
orbit space, EG×G Y .

In [34], where Segal introduced classifying spaces of arbitrary (topological) cate-
gories, homotopy colimits also made their first appearance, namely as classifying
spaces of transport categories. The derived functor approach in definition 5.6 was
developed more thoroughly in [5], now the standard reference for homotopy colimits
and homotopy limits, and later in [7].

Our theme is that most stratifications lead to homotopy colimit decompositions.
Let us first note that many homotopy colimits are stratified. Compare [35].

Example 5.8. Let C be a small EI–category (all Endomorphisms in C are Isomor-
phisms). For each isomorphism class [C] of objects in C, we define a locally closed
subset BC[C] of the classifying space BC, as follows. A point x ∈ BC is in BC[C] if
the unique cell of BC containing x corresponds to a diagram

C0 ← C1 ← · · · ← Ck

without identity arrows, where C0 is isomorphic to C. (Remember that BC is a
CW–space, with one cell for each diagram C0 ← C1 ← · · · ← Ck as above.) Then
BC is stratified, with one stratum BC[C] for each isomorphism class [C].

Example 5.9. Let F : C → Spaces be a functor, where C is a small EI–category.
Then C∫F is a topological EI–category; hence

B(C∫F ) = hocolim F

is stratified as in example 5.8, with one stratum for each isomorphism class [C] of
objects in C. (This stratification can also be pulled back from the stratification of
BC defined above, by means of the projection B(C∫F )→ BC.)

In order to show that “most” stratified spaces can be obtained by the procedure
described in example 5.8, we now associate to each stratified space X a topological
category.

Definition 5.10. Let X be a stratified space with strata Xi. A path γ : [0, c]→ X,
with c ≥ 0, is nonincreasing if the induced map from [0, c] to the poset of strata
of X is nonincreasing. The nonincreasing path category CX of a stratified space X
has object set X (made discrete). The space of morphisms from x ∈ X to y ∈ X
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is the space of nonincreasing paths starting at x and ending at y. Composition of
morphisms is Moore composition of paths.

Each diagram of the form x0 ← x1 ← · · · ← xk in CX determines real numbers
c1, c2, . . . , ck ≥ 0 and a nonincreasing path γ : [0, c1 + · · · ck] → X with γ(0) = xk

and γ(c1 + · · · ck) = x0. Composing γ with the linear map ∆k → [0, c1 + · · · ck]
taking the i–th vertex to ci+1 + · · · + ck, we obtain a map ∆k → X; and by
“integrating” over all such diagrams, we have a canonical map

(10) BCX −→ X .

Definition 5.11. The stratified space X is decomposable in the large if (10) is a
weak homotopy equivalence. It is everywhere decomposable if each open subset of
X, with the stratification inherited from X, is decomposable in the large.

If X is decomposable in the large, we can think of (10) as a homotopy colimit
decomposition of X, since BCX = hocolim F for the functor F given by F (x) = ∗,
for all objects x. Note that CX is an EI–category “up to homotopy”. That is, for
any object y of CX , the space of endomorphisms of y is a grouplike topological
monoid:

morCX
(y, y) = Ω(Xi, y) ,

where Xi is the stratum containing y. More to the point, the category π0(CX), with
the same object set as CX and morphism sets

morπ0(CX)(y, z) = π0morCX
(y, z),

is an EI–category.

More useful homotopy colimit decompositions of X can often be constructed from
the one above by choosing a continuous functor p : CX → D, where D is a discrete
EI–category, and using

(11) hocolim
CX

F ' hocolim
D

p∗F .

Here p∗F is the “pushforward” of F along p, also known as the left homotopy Kan
extension. It associates to an object d of D the homotopy colimit of F ◦ ϕd, where
ϕd is the forgetful functor from the “over” category p/d to CX . An object of p/d
consists of an object x in CX and a morphism p(x) → d in D. Consult the last
pages of [6] for formula (11) and other useful tricks with homotopy colimits and
homotopy limits.

Keeping the notation in (11), let x ∈ X and let g : p(x) → d be a morphism in
D. A lift of (x, g) consists of a morphism γ : x → y in CX and an isomorphism
u : p(y)→ d in D such that u ◦ p(γ) = g. If X is locally 1–connected, then the set
of lifts of (x, g) has a canonical topology which makes it into a covering space of a
subspace of the space of all (Moore) paths in X.

Definition 5.12. Assume that X is locally 1-connected. We will say that p has
contractible chambers if the space of lifts of (x, g) is weakly homotopy equivalent
to a point, for each (x, g) as above.
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Proposition 5.13. Suppose that X is locally 1–connected and p has contractible
chambers. Then for d in D, the value (p∗F )(d) is weakly homotopy equivalent to
a covering space of a union of strata of X; namely, the space of pairs (y, u) where
y ∈ X and u : p(y)→ d is an isomorphism.

Example 5.14. Let X = |W| with the stratification discussed in the previous
section. This is decomposable in the large. We can think of a point x ∈ |W| as a
smooth oriented 3–manifold Ex without boundary, with a proper map fx : Ex → R.
A path from x to y in |W| amounts to a family of smooth oriented 3–manifolds
Eγ(t), each without boundary and with a proper map fγ(t) : Eγ(t) → R; the pa-
rameter t runs through an interval [0, c] and γ(0) = x, γ(c) = y. For each t ∈ [0, c]
let Sγ(t) be the set of critical points of fγ(t) with critical value 0; this comes with
a map to {0, 1, 2, 3}, the Morse index map. If the path is nonincreasing, then it
is easy to identify each Sγ(t) with a subset of Sγ(0) = Sx, in such a way that we
have a nonincreasing family of subsets Sγ(t) of the finite set Sx, parametrized by
t ∈ [0, c]. With every z ∈ Sx = Sγ(0) which is not in the image of Sy = Sγ(c), we can
associate an element ε(z) ∈ {−1,+1}, as follows. There is a largest t ∈ [0, c] such
that z ∈ Sγ(t); call it t(z). The stability property of nondegenerate critical points
ensures that for t just slightly larger than t(z), the element z viewed as a point in
Sγ(t(z)) ⊂ Eγ(t(z)) is close to a unique critical point of fγ(t) : Eγ(t) → R. The latter
has critical value either greater than 0, in which case ε(z) = +1, or less than 0, in
which case ε(z) = −1. Summarizing, a morphism γ : x → y in CX determines an
injective map γ∗ : Sy → Sx over {0, 1, 2, 3} and a function from Sx r u(Sy) to the
set {+1,−1}.
These considerations lead us to a certain category K. Its objects are the finite sets
over {0, 1, 2, 3}; a morphism from S to T in K is an injective map u from S to T
over {0, 1, 2, 3}, together with a function ε from T ru(S) to {−1,+1}. The compo-
sition of two composable morphisms (u1, ε1) : R → S and (u2, ε2) : S → T in K is
(u2u1, ε3), where ε3 agrees with ε2 on T ru2(S) and with ε1u2

−1 on u2(S ru1(R)).
The rule x 7→ Sx described above is a functor p from CX to Kop. This func-
tor has contractible chambers. For S in K, the space (p∗F )(S) is therefore, by
proposition 5.13, a classifying space for families of 3–manifolds Ex equipped with
fx : Ex → R as in theorem 3.4 and with a specified isomorphism Sx → S in K.
Consequently, it can be identified with a finite–sheeted covering space of the stra-
tum |W〈S〉| of |W|; see section 4. It is convenient to write |WS | for (p∗F )(S).
Proposition 5.13 does not say anything very explicit about the map |WS | → |WR|
induced by a morphism (u, ε) : R → S in K, but this is easily described up to
homotopy. Namely, suppose given a family of smooth 3–manifolds Ex with Morse
functions fx and isomorphisms ax : Sx → S, as above. Now perturb each fx slightly
by adding a small smooth function gx : Ex → R with support in a small neigh-
borhood of Sx, locally constant in a smaller neighborhood of Sx, and such that for
z ∈ Sx we have

gx(z)

 = 0 if ax(z) ∈ u(R)
> 0 if ε(ax(z)) = +1
< 0 if ε(ax(z)) = −1 .

(The gx should also depend smoothly on the parameter x, like the fx.) The set of
critical points of fx + gx having critical value 0 is then identified with u(R) ∼= R.
Therefore, by keeping the Ex and substituting the fx + gx for the fx, we obtain
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a family of the type which is classified by maps to |WR|. Letting the parame-
ter manifold approximate |WS |, we obtain a well defined homotopy class of maps
|WS | → |WR|.
For fixed S, the characterization of |WS | as a classifying space for families of ori-
ented 3–manifolds Ex with proper Morse functions fx : Ex → R and isomorphisms
Sx
∼= S can be simplified. It turns out that we need only allow Morse functions

fx having no other critical points than those in Sx; that is, no critical values other
than, possibly, 0. When this extra condition is imposed, the families considered
are automatically bundles of 3–manifolds over the parameter space — not just sub-
mersions with 3–dimensional fibers. This is an easy consequence of Ehresmann’s
fibration theorem. Equally important is the fact that each of the 3–manifolds Ex

in such a bundle can be reconstructed from the closed oriented surface fx
−1(−1)

and certain surgery data. These data are instructions for disjoint oriented surgeries
[41, §1] on the surface, one for each element of Sx

∼= S.
In this way, we end up with a description of |WS | as a classifying space for bundles
of closed oriented surfaces, where each surface comes with data for disjoint oriented
surgeries labelled by elements of S. (End of example.)

The stratification of |Wloc| sketched in the previous section can be taken to pieces
in a similar fashion. The result is a homotopy colimit decomposition

|Wloc| ' hocolim
S

|Wloc,S |

where S runs through K. Here |Wloc,S | should be thought of as the space of S–tuples
of oriented surgery instructions on an oriented surface — but without a specified
surface! See [26] for details. The homotopy colimit decompositions for |W| and
|Wloc| are related via obvious forgetful maps.

Now, in order to obtain information about the homotopy fibers of |W| → |Wloc|,
one can ask what the homotopy fibers of

|WS | → |Wloc,S |
are, for each S in K, and then how they vary with S. The first question is easy to
answer: the homotopy fibers of |WS | → |Wloc,S | are classifying spaces for bundles
of compact oriented surfaces with a prescribed boundary depending on the chosen
base point in |Wloc,S |. The dependence on S can be seen in commutative squares
of the form

|WS | −−−−→ |Wloc,S |y y
|WR| −−−−→ |Wloc,R|

where the vertical arrows are induced by a morphism R→ S in K. With the above
geometric description, the induced maps from the homotopy fibers of the top hor-
izontal arrow to the homotopy fibers of the bottom horizontal arrow are maps of
the kind considered in Harer’s stability theorem 1.3. Unfortunately the stability
theorem cannot be used here without further preparation: there is no reason to
suppose that all surfaces in sight are connected and of large genus. Fortunately,
however, the homotopy colimit decomposition of |W| described in 5.14 can be rear-
ranged and modified in such a way that this objection can no longer be made. (At
this point, concatenation matters must be taken seriously and consequently some
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of the main results obtained so far must be reworded, as explained in remark 2.4.)
The stability theorem 1.3 can then be applied and the homotopy fiber sequence (9)
is a formal consequence.

To conclude, it seems worthwhile to stress that the Harer stability theorem 1.3 is
an enormously important ingredient in the proof of Madsen’s conjecture 1.6. But
in contrast to Vassiliev’s h–principle (example 3.2), which is an equally important
ingredient, the stability theorem only makes a very brief and decisive appearance at
the end of the proof. There it is used almost exactly as in Tillmann’s proof of 1.4.

A. Vassiliev’s h–principle: An outline of the proof

This outline covers only the case where the manifold M is closed. It follows [40] in
all essentials. I have made some minor rearrangements in the overall presentation,
emphasizing the way in which transversality theory and interpolation theory shape
the proof. I am indebted to Thomas Huettemann for suggesting this change in
emphasis. Any errors and exaggerations which may have resulted from it should
nevertheless be blamed on me. Besides, it is not a big change: plus ça change, plus
c’est la même chose.

Let Z be the topological vector space of all smooth maps M → Rn, with the
Whitney C∞ topology [13]. Let ZA ⊂ Z be the closed subset consisting of those
f : M → Rn which have at least one singularity of type A. Then ZrZA is identified
with Γitg ∩Γ¬A. As our starting point, we take the idea to approximate Z r ZA by
subspaces of the form DrZA where D can be any finite dimensional affine subspace
of Z; in other words, D is a translate of a finite dimensional linear subspace. To be
more precise, let r be a positive integer; we will look for finite dimensional affine
subspaces D of Z such that the inclusion–induced map in integer cohomology

(12) H∗(Z r ZA) −→ H∗(D r ZA)

is an isomorphism for ∗ ≤ r.
Vassiliev’s method for solving this important approximation problem is to impose a
general position condition (c1) and an interpolation condition (c2,r) on D. The two
conditions are described just below. Further down there is a sketch of Vassiliev’s
argument showing that (12) is indeed an isomorphism for ∗ ≤ r if D satisfies both
(c1) and (c2,r). The h–principle then “falls out” as a corollary.

Condition (c1) requires, roughly, that the finite dimensional affine subspace D ⊂ Z
be in general position relative to ZA.
Vassiliev is not very precise on this point, but I understand from [23] that every
semialgebraic subset S of a finite dimensional real vector space V has a preferred
regular stratification. This is a partition of S into smooth submanifolds of V which
satisfies the conditions for a stratification and, in addition, Whitney’s regularity
conditions [42]. In particular, the portion of A lying over 0 ∈ Rm has a preferred
regular stratification; it follows that A(M) has a preferred regular stratification as
a subset of the smooth manifold Jk(M, Rn).

Definition A.1. Let D be a finite dimensional affine subspace of Z. We say that
D satisfies condition (c1) if

• the map u : D×M −→ Jk(M, Rn) given by u(f, x) = jkf(x) is transverse to
each stratum of A(M), so that u−1(A(M)) is regularly stratified in D×M ;
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• the projection from u−1(A(M)) to D is generic.

The second item in definition A.1 amounts to a condition on the multijets [13] of the
evaluation map D×M → Rn at finite subsets of u−1(A(M)). The condition implies
local injectivity of the projection from u−1(A(M)) to D, and self-transversality in
a stratified setting. More precision would take us too far.

The content of the much more striking condition (c2,r) is that D must contain at
least one solution for each interpolation problem on M of a certain type depending
on r.

Definition A.2. Let dkmn be the dimension of the real vector space of degree ≤ k
polynomial maps from Rm to Rn. Let D be a finite dimensional affine subspace of
Z. We say that D satisfies condition (c2,r) if, for every C∞(M, R)–submodule Y
of Z with dimR(Z/Y ) ≤ r · dkmn, the projection D → Z/Y is onto.

To see what this has to do with interpolation, fix distinct points z1, z2, . . . , zs in
M , with s ≤ r, and k–jets u1, u2, . . . , us ∈ Jk(M, Rn) so that zi is the source of
ui. Let Y consist of the f ∈ Z whose k–jets at z1, z2, . . . , zs vanish. If D satisfies
(c2,r), then D → Z/Y must be onto and so there exists g ∈ D with jkg(zi) = ui

for i = 1, 2, . . . , s.

Let Lr be the collection of all finite dimensional affine subspaces D of Z satisfying
(c1) and (c2,r). Then we have Lr+1 ⊂ Lr for all r ≥ 0.

Lemma A.3. There exists an increasing sequence of finite dimensional affine sub-
spaces D1, D2, D3, D4, . . . of Z such that Di ∈ Li and the union

⋃
i Di is dense in

the space Z.

The proof of this is an application of transversality theory as in [13] and interpo-
lation theory as in [12]. The fact that the set of all C∞(M, R)–submodules Y of Z
satisfying the conditions in definition A.2 has a canonical topology making it into
a compact Hausdorff space is an essential ingredient.

Theorem A.4. The map (12) is an isomorphism if D ∈ Lr and ∗ ≤ r.

Sketch proof. Write DA = D ∩ ZA. In the notation of definition A.2, this is the
image of u−1(A(M)) under the projection D × M → D. Condition (c1) on D
ensures that DA is a well–behaved subset of D, so that there is an Alexander
duality isomorphism

(13) H∗(D r ZA)
∼=−−−−→ H lf

dim(D)−∗−1(DA),

where the superscript lf indicates that locally finite chains are used. To investigate
DA, Vassiliev introduces a resolution RDA of DA, as follows. Let ∆(M) be the
simplex spanned by M , in other words, the set of all functions w from M to [0, 1]
such that {x ∈M | w(x) > 0} is finite and

∑
x∈M w(x) = 1. The standard topology

of ∆(M) as a simplicial complex is not of interest here, since it does not reflect the
topology of M . Instead, we endow ∆(M) with the smallest topology such that,
for each continuous g : M → R, the map w 7→

∑
x w(x)g(x) is continuous on

∆(M). We write ∆(M)t to indicate this topology. Now RDA can be defined as
the subspace of DA ×∆(M)t consisting of all (f, w) such that the support of w is
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contained in the set of A–singularities of f . Because D satisfies condition (c1), the
projection

RDA −→ DA

is a proper map between locally compact spaces. Each of its fibers is a simplex,
and it is not difficult to deduce that it induces an isomorphism in locally finite
homology:

(14) H lf
∗ (RDA)

∼=−−−−→ H lf
∗ (DA).

For an integer p, let RDp
A ⊂ RDA consist of the pairs (f, w) where the support of w

has at most p elements. The filtration of RDA by the closed subspaces RDp
A leads

in the usual manner to a homology spectral sequence of the form

(15) E1
p,q = H lf

p+q+dim(D)(RDp
A, RDp−1

A ) =⇒ H lf
p+q+dim(D)(RDA)

where p, q ∈ Z. There are three vanishing lines: E1
p,q = 0 for p < 0 and for

p + q < −dim(D) by construction, but also

(16) E1
p,q = 0 when 2p + q > 0.

To understand (16), note or accept that by the general position condition (c1) on
D, the codimension of the image of RDp

A in D is at least p(codim(A) −m); here
codim(A) denotes the codimension of A in Jk(Rm, Rn). Since the fibers of the
projection RDp

A → D are at most p–dimensional, it follows that the dimension of
RDp

A is not greater than p + dim(D) − p(codim(A) − m). With our hypothesis
codim(A) ≥ m + 2 this implies

dim(RDp
A) ≤ dim(D)− p ,

and (16) follows.
Now comes the crucial observation that E1

p,q does not depend on our choice of
D ∈ Lr, as long as p ≤ r. To see this, we use the multi–jet prolongation map

(17) RDA −→ ∆(A(M))t

which takes (f, w) ∈ RDA to w̄ with w̄(u) = w(x) if u = jkf(x) and w̄(u) = 0
otherwise. Here ∆(A(M))t is the simplex spanned by the set A(M) ⊂ Jk(M, Rn),
but again topologized so that the topology of A(M) is reflected; cf. the definition
of ∆(M)t. Note that each fiber of (17) is identified with an affine subspace of
D; but the fiber dimensions can vary and some fibers may even be empty. But
restricting (17), we have

(18) RDp
A r RDp−1

A −→ ∆(A(M))p
t r ∆(A(M))p−1

t

where ∆(A(M))p
t consists of the w ∈ ∆(A(M))t whose support has at most p

elements. (The indexing goes against all traditions, but it is consistent.) Now
the interpolation condition (c2,r) on D and our assumption p ≤ r imply that the
fibers of (18) are nonempty affine spaces, and all of the same dimension; in other
words, (18) is a bundle of affine spaces. Its base space obviously does not depend
on D, and it can be shown that its first Stiefel–Whitney class, too, is independent
of D. Consequently the locally finite homology of the total space,

H lf
∗ (RDp

A r RDp−1
A ) ∼= H lf

∗ (RDp
A, RDp−1

A ) = E1
p,∗−p−dim(D) ,

is identified with the locally finite homology of the base space, with twisted inte-
ger coefficients, and so is independent of D except for the obvious dimension shift.
(Note the strong excision property of locally finite homology groups.) To state the
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independence result more precisely, the spectral sequence (15) depends contravari-
antly on D, and for C,D ∈ Lr with C ⊂ D, the induced map from the D–version
of E1

p,q to the C–version of E1
p,q is an isomorphism whenever p ≤ r.

Remembering (16) now, we can immediately deduce that Em
p,q is also independent

of D ∈ Lr, in the same sense, for any m ≥ 0 and p, q with p + q ≥ −r. Remember-
ing the isomorphisms (14) and (13) also, we then conclude that for C,D ∈ Lr with
C ⊂ D, the inclusion C r ZA → D r ZA induces an isomorphism

H∗(D r ZA) −→ H∗(C r ZA)

for ∗ ≤ r. With lemma A.3, this leads us finally to the statement that (12) is an
isomorphism for ∗ ≤ r and D ∈ Lr. (First suppose that D is one of the Di in
lemma A.3; then for the general case, approximate D by affine subspaces of the Di

for i� 0.) �

But we have achieved much more. Letting r tend to ∞, we have a well defined
spectral sequence converging to

H∗(Z r ZA) = H∗(Γitg ∩ Γ¬A) ,

independent of r. (Convergence is a consequence of (16), and again lemma A.3 is
needed to show that the spectral sequence is independent of all choices.) Similar
but easier reasoning leads to an analogous spectral sequence converging to the
cohomology of Γ¬A. By a straightforward inspection, the inclusion of Γitg ∩ Γ¬A

in Γ¬A induces an isomorphism of the E1–pages. This establishes Vassiliev’s h–
principle in the case where M is closed.
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