Appendix 3
Homological Algebra

A3.1 Introduction

A complex of modules over a ring R is a sequence of R-modules and
homomorphisms

F. ... Mﬁﬂ,p’iﬂ L e
such that ¢;p;.1 = 0 for each i. The homology of F' at F; is defined to be
H.F :=ker ¢;/im ;..

Homological algebra is, roughly speaking, the study of complexes of mod-
ules and their homology.

Some basic terminology: The module F; is called the term of degree 2 of
F. For reasons we shall explain the maps ; are often called the “boundary
operators,” or “differentials,” of F. The elements of the image of ¢;;; are
accordingly called boundaries, and the elements of the kernel of ; are
called cycles. We think of F as having infinitely many terms, but we shall
almost always be concerned only with complexes where F; = 0 either for
all 7 < 0 or for all i > 0. It is often convenient not to indicate explicitly the
terms that are zero. The complex JF is said to be exact at F; if H;F' = 0;
we say that F is exact if it is exact at every F;.

Complexes appear in the work of Cayley fairly explicitly as early as
[1858]. They were used by Hilbert in his famous work [1890] to compare
a factor ring of a polynomial ring to the polynomial ring itself (just as we
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shall use free resolutions to compare an arbitrary module to free modules);
the context of his application was explained in Chapter 1. Our current
terminology was introduced much later. The name “complex,” for example,
arose from the simplicial complexes of topology: To an oriented simplicial
complex Poincaré [1899] associated a “chain complex,” with geometrically
defined “boundary operator.” The case of a triangle is illustrated in the
figure. The formulation in terms of groups and maps came later, apparently
suggested by Emmy Noether to several people in the mid-1920s.
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Another part of the prehistory of homological algebra is Poincaré’s study
of the complex of differential forms on a manifold that we now call the de
Rham complex: Poincaré’s lemma asserts that the de Rham complex of R™
is exact. (de Rham’s name attaches to the complex because he was the first
to prove—in the 1940s—that the cohomology of the de Rham complex is a
topological invariant.) The maps in the de Rham complex are derived from
differentiation, and it was natural to call them differentials:

22T - NI — - O(f(2) = f(z)da.
If M is an R-module, we may consider M as a complex
= 00-M—-0—--.

with only one nonzero term. Thus homological algebra includes the study
of modules. In commutative algebra, homological algebra is usually pur-
sued in order to study modules more closely. Complexes give us a way of
comparing an arbitrary module with nicer ones—with free, or projective,
or injective modules. Perhaps the most complete expression of this idea is
in the construction of the derived category, which we describe briefly in the
last section of this appendix.

Complexes arise naturally from the study of systems of linear equations:
A system of ng linear equations in n; unknowns over a ring R corresponds
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to an ng X n; matrix ¢ over R (the matrix of coefficients of the equations),
or alternately as a map of free R-modules, ¢ : F; = R™ — R™ = F,. A
family of solutions to the (homogeneous) equations

pX =0
may be described by a map F, — F; making the sequence
FB-Fn-EK

a complex. Solving the equations means giving a “complete” set of solu-
tions; that is, a map as above making the complex exact at Fj.

If R is a field, then of course there is a finite linearly independent set of
solutions in terms of which all others can be expressed. For more general
rings, this is no longer the case: It may be impossible to choose a generating
set for the kernel consisting of linearly independent elements.

An example will make the situation clear. Let R = k[a, b, c|] be a poly-
nomial ring in three variables, and consider the linear equation in three
unknowns

aX;+bXo+¢cX3=0

corresponding to the map ¢ : R? — R with matrix (a,b,c). By analogy
with our experience of linear equations over a field, we should say that
the rank of this system is 1, so we should expect 3 — 1 = 2 independent
solutions. However, the three columns of the matrix

0 ¢ —b
—c 0 a
b —a 0

are all solutions (elements of ker ). It is easy to see that they actually
generate ker ¢, but that no two elements generate it. Furthermore, these
three generators are linearly dependent in the sense that if we multiply the
first column by a, the second by b, and the third by ¢, and add, we get 0. It
is not hard to show (see Chapter 20) that every complete set of solutions
must be linearly dependent. Thus we have a situation that could not have
arisen over a field: a system of linear equations such that any complete set
of solutions is linearly dependent.

If we wish to describe the solutions to our original system of equations as
linear combinations of the solutions in a complete set of solutions, then we
must describe the linear dependencies (otherwise, we won’t be able to tell
which linear combinations give the trivial solution). If we have ny solutions,
and we define a new map , of free R-modules F;, = R™ to F; by sending
the basis elements of Fy to our solutions, then the dependencies are the
elements of the kernel of ;. We may regard ¢, as being a new system of
linear equations, and the process of solving begins again. With hindsight
we rename ¢ as @1, and continuing the process above we finally arrive at
a complex:
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"'—)Rniﬂ)"'ﬁRnlﬂRno;

in fact, this is an especially interesting sort of complex, called a free reso-
lution. In the example above, the resolution actually ends at the next step
beyond the one we have given, in the sense that the kernel of 5 is itself
free (that is, ¢, has a complete system of solutions with no dependencies).
It may be exhibited as in Figure A3.1.

0O > R —» R » R —— = R
a 0 c —b (abc)
b —-c 0 a
c b —a O
FIGURE A3.1.

This phenomenon is typical of rings called regular rings; see Chapter 19.
The complex given here is called a Koszul complex (the name, though
universal, is misleading: Such complexes appeared in the works of Cayley
and Hilbert before Koszul was born).

We shall now take up these notions systematically, if somewhat sketchily.
The proofs that we have omitted are all easy, and we leave them as exercises
for the reader.! The goal of the first half of this appendix is the theory of
derived functors; Ext, Tor, and local cohomology are the most important
ones here. One of our less traditional topics in this part is the theory of
injective modules over a Noetherian ring. The second half of the appendix
is an introduction to spectral sequences.

As everywhere in this book, we shall work with modules over a commu-
tative ring, but the reader should know that nearly everything here can
be generalized with just a little effort to modules over an arbitrary ring,
or even to objects in a nice Abelian category. Jans [1964], Rotman [1979],
and Maclane [1963] are readable sources for more information, roughly in
order of increasing difficulty and comprehensiveness. The book of Gelfand
and Manin [1989] should soon be available in English.

Part I: Resolutions and Derived Functors

Let R be a commutative ring; the modules in this chapter will all be R-
modules.

'This is not so bad. A famous exercise from Serge Lang’s influential textbook
Algebra [Addison-Wesley, Reading, MA, 1965, p. 105] reads: “Take any book on
homological algebra, and prove all the theorems without looking at the proofs given
in that book.”
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A3.2 Free and Projective Modules

The easiest modules to understand are the free modules: direct sums of
copies of the ring. From our point of view free modules are useful because
it is easy to define a map from a free module: Namely, suppose F is free
on a set of generators p; (that is, F' = &; R, and we denote the generator
of the ith summand by p;). To define a map from F' to any module M it
is enough to tell where to send the generators p;, and any choice of images
for these elements will do. That is,

HomR—modules(Fa M) = HomSets({pi}’ M)

(In the language of category theory (Appendix 5), the “free module functor
is left-adjoint to the forgetful functor”; but we shall not use this formulation
here.) This property makes them projective in the following sense:

Definition. A module P is projective if for every epimorphism of modules
a: M —» N and every map 3 : P — N, there exists a map vy : P — M
such that 3 = ary, as in the following figure.

/
4

3 Y /’/ B

M—>» N

Free modules are projective because if P is free on a set of generators p;,
then we may choose elements ¢; of M that map to the elements 3(p;) € N,
and take 7 to be the map sending p; to g;.

The definition of projectivity has several useful reformulations:

Proposition A3.1. Let P be an R-module. The following are equivalent:

a. P 1s projective.

b. For every epimorphism of modules « : M — N, the induced map
Hom(P, M) — Hom(P, N) is an epimorphism.

c. For some epimorphism F — P, where F is free, the induced map
Hom(P, F) — Hom(P, P) is an epimorphism.

d. P is a direct summand of a free module.

e. FEvery epimorphism « : M — P “splits”: That is, there is a map
B: P — M such that a3 = 1p.
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Proof.
a <> b: This is a restatement of the definition.
b = c: Obvious.

¢ = d: Any map ¢ € Hom(P, F) in the preimage of the identity map
1 € Hom(P, P) is a splitting of the epimorphism F' — P, so P
is a summand of F.

d = b: This follows because for any modules P and ¢ we have
Hom(P @ Q, —) = Hom(P, —) & Hom(Q, —).
We have now shown that a, b, ¢, and d are equivalent.

a = e: Apply the definition in the case where [ is the identity map of
P.

e = d: Obvious. O

As a first example, the reader may check that a finitely generated Z-
module is projective iff it is torsion-free iff it is free.

Not all projective modules are free; perhaps the simplest example is the
ideal (2,1 + +/=5) C Z[v/—-5]; see Chapter 11. In general, whether or not
a projective module is free is quite a hard question. (We have already
discussed the connection of this question to number theory.)

Geometrically, projective modules correspond to algebraic vector bun-
dles: The set of sections of a vector bundle on a variety X is a module
over the ring of regular functions on X. This connection is sketched in
Corollary A3.3. The relation of algebraic vector bundles to the structure
of X is more subtle than in the topological case. For example, topological
vector bundles on contractible spaces are easily shown to be trivial, but it
was only recently shown (by Quillen and Suslin, in answer to a celebrated
problem of Serre; see Lam [1978]) that algebraic vector bundles on A} are
trivial—that is, that projective modules over k[zy,...,z,], where k is a
field, are free.

Projective modules behave well under localization. Moreover, there is a
useful “local criterion” for projectivity, cstablished in Exerciscs 4.11 and
4.12 and their hints, and summarized as follows:

Theorem A3.2 (Characterization of projectives). Let M be a finitely pre-
sented module over a Noetherian ring R. The following are equivalent:

a. M is a projective module.

b. Mp is a free module for every mazimal ideal (and thus for every prime
ideal) P of R.
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c. There is a finite set of elements x1,...,z, € R that generate the unit
ideal of R, such that M[z]"'] is free over Rlz;'] for each i.

In particular, every projective module over a local ring is free. Every graded
projective module over a positively graded ring R with Ry a field is a graded
free module. O

Corollary A3.3. Finitely generated projective modules over the affine ring
A of a variety X correspond to vector bundles on X : Given a vector bundle
E, its sections I'(E) form a finitely generated projective A-module, and any
finitely generated projective module arises from a unique vector bundle in
this way.

Proof (sketch, for those who know about sheaves). If E is a vector bundle,
then there is a covering of X by affine open sets X; = {p € X|z;(p) # 0}
such that E|x is trivial. Thus I'(E|x,) = I'(E)[z;] is free, and ['(E) is
projective by Theorem A3.2. Conversely, suppose M is a finitely generated
projective module. By Theorem A3.2 we may find elements z;,...,z, that
generate the unit ideal and such that Mz;'] is free (of some rank r;) for
each ¢. Let F; be the trivial bundle on X; of rank r;. Choose an isomorphism
o; 1 T(E;) —» M[z7']. On X; N X; we may form the composite

D(Eix,) = M{(ziz;) ™'} = T(Ejx,),

and this determines an isomorphism of bundles a;; : Eyxnx, = Ejixnx,-
Using the maps a;; as gluing maps, we reconstruct a vector bundle £ on X.
An easy computation using Exercise 2.19 shows that M = ['(E). Further,
if M is the module of sections of a vector bundle £’ to begin with, then
the identification of modules of sections

[(E;) — M[z"] = T(E[,)

comes from an isomorphism E|x, = E; — E,’ X Since these isomorphisms
are compatible with the gluings, we get E' & E. a

A3.3 Free and Projective Resolutions

As we have already noted, every module M is an epimorphic image of a
free (and thus projective) module—just choose a set of generators {g;} for
M, and map a free module on a corresponding set of generators {e;} to
M by sending e; to g;. This makes it easy to compare any module to free
modules: if & : Fy — M is an epimorphism, then we may say that Fy differs
from M by the module ker . We may thus express M in terms of free
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modules “better” by mapping a free module F; onto ker a. Taking ¢ to
be the composite
F, — kera — Fy,

we may say instead that M = coker ¢ : F; — Fy. Unfortunately, there is
still a (possibly) nonfree module lurking in this description: the kernel of
1. We can repair this defect to some extent by taking a free module F;
that maps onto ker ;. Writing ¢, : Fy — Fj for the composite

Fy — ker o1 «— F},
we may think of M as given by the sequence of free modules
Fr— F| — F.

There is still the problem that ker oo might not be free. Repeating the
process above indefinitely if necessary, we may at last obtain a sequence of
free modules

P+l Pr 21
F: -5 Fn—F>3F - 5K

with the properties that ¢;,1 maps Fj,; onto the kernel of ¢; for each i > 1,
and that M is the cokernel of ;. A sequence of free modules F; and maps
p; with these properties is called a free resolution of M. If the F; are
merely projective, it is called a projective resolution. Note that F' is a
complex in the sense above (regarding all the F; with ¢ < 0 as 0).

Example. Perhaps the simplest nontrivial, finite free resolutions are the
Koszul complexes; see Chapter 17. The simplest nontrivial, infinite resolu-
tion might be the following:

Let S = k[z] be a polynomial ring in one variable (k could be any ring,
but might as well be taken to be a field). Let R = S/(z"), and let M
be R/Rx™, with 0 < m < n, regarded as an R-module. Here is a free
resolution of M as an R-module:

n—m n—m T
x

TR RESRER,

where we have written z* for the map that is multiplication by z*. We leave
the easy verification to the reader.

A3.4 Injective Modules and Resolutions

The notion of an injective module is dual to that of a projective module,
but perhaps because injective modules are almost never finitely generated,
they are not so familiar.

Definition. An R-module Q is injective if for every monomorphism of R-
modules o : N — M and every homomorphism of R-modules 8 : N — Q,
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there exists a homomorphism of R-modules v : M — @Q such that 3 = va,
as in the figure.

Although the definition of injective modules is precisely dual to that of
projective modules, the theory is not dual at all (the category of mod-
ules is quite different from its dual category, so this should not be a
surprise). The subject is quite beautiful, and we shall explain its begin-
ning.

We begin with a result of Reinhold Baer (who defined injective modules
in [1940]), showing that in the definition of injectives it is enough to check
the case where a is the inclusion of an ideal in the ring.

Lemma A3.4 (Baer). Let Q be an R-module. If for every ideal I C R,
every homomorphism 3: 1 — @ extends to R as in the diagram, then Q is
injective.

Proof. Suppose M and N are arbitrary R-modules. Let 3 : N — Q be
a homomorphism, and let @ : N — M be a monomorphism. If N’ is a
submodule of M containing N, then we shall say that 8’ : N' — @ is an
extension of 3 if B’ restricts to 3 on N. We wish to show that there is an
extension of 3 to M. By Zorn’s lemma, there is a submodule N’ and an
extension 3 of 8 to N’ that is maximal in the sense that 3’ can be extended
no further. If N’ = M, we are done.

Supposing that N’ # M, we shall derive a contradiction. Let m € M be
outside of N’, and consider the submodule N” = N' + Rm. Let I = {r €
R|rm € N’}. By hypothesis the map I — @Q sending r € I to §'(rm) € Q
extends to a map § : R — Q. The map § induces a map ¢’ : Rm — Q
because the kernel of the map R — Rm is contained in ker §, and &’ agrees
with 3 on Rm N N’ by definition. We may thus define an extension 3”
of 3 to N” by letting 3” be 3 on N’ and § on Rm. This contradicts
the maximality of N’ and 3'. All the necessary maps are shown in the
figure. il
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Injective modules over Z—that is, injective Abelian groups—are easy to
describe:

Proposition A3.5. An Abelian group Q) is injective iff it is divisible in the
sense that for every q € Q and every o # n € Z there erists ¢ € Q such
that ng' = q.

Proof. Let Q@ be injective, and let ¢ € Q,0 #nn e Z. Let 3:Z — Q be the
map sending 1 to ¢ and let o : Z — Z be multiplication by n. Since @ is
injective there is a map v : Z — Q with 8 = ya. It follows that ny(1) = ¢,
so @ is divisible.

Conversely, suppose that @ is divisible. We apply Baer’s lemma, A3.4:
Let (n) C Z be the inclusion of an ideal. Suppose a map 3 : (n) — Q takes
n to q. Since Q is divisible we may choose ¢’ € @ with ng’ = ¢. The map
v :Z — @ sending 1 to ¢’ obviously extends (.

From Proposition A3.5 we easily derive a result that is dual to the state-
ment that subgroups of free groups are free.

Corollary A3.6. If Q is an injective Abelian group, and K is any subgroup,
then Q/K is an injective Abelian group.

Proof. If Q is divisible, then Q/K is divisible too.

We can now show that every Abelian group may be embedded in an
injective Abelian group:

Corollary A3.7 (Baer [1940]). There are “enough” injective Abelian
groups, in the sense that for every module M there is a monomorphism
1: M — Q with Q injective.

Proof. Write M = F/K, with F' a free module. F' is contained in the Q-
vector space F' ®z Q, which is obviously divisible. Thus M is contained in
the divisible group (F ®z Q)/K. O

Remarkably enough, the corresponding statement for modules over any
ring, which is the main goal of our development, is an immediate conse-
quence. (In fact the same argument works still more generally, for example
in categories of sheaves of modules over a “ringed space”—a fact that is
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exploited in the cohomology theory of sheaves. See, for example, Hartshorne
[1977, p. 207].) The key observation is this:

Lemma A3.8. If R is an S-algebra, and Q' is an injective S-module, then
Q = Homg(R, Q") is an injective R-module (the R-module structure comes
via the action of R on the first factor of Homg(R, Q')).

For a partial converse, see Exercise A3.7a.

Proof. Let N C M be asubmodule, and let 3 : N — @ be a homomorphism;
we must show that 3 extends to M. There is a natural map of S-modules
Q — @', sending a homomorphism ¢ to ¢(1). Let 8’ be the composite of
B and this map Q@ — ', and let 4/ be an extension of ' to M, regarded
as an S-module. We may define the desired map v : M — @ of R-modules
by sending m to the map ¢ defined by ¢(r) = v/(rm).

Corollary A3.9. For any ring R, the category of R-modules has enough
injective objects, in the sense that for every module M there is a
monomorphism i : M — @Q with @ injective.

Proof (Eckmann and Schopf [1953]). There is a monomorphism o : M —
Homz(R, M) sending m to the map ¢ given by ¢(r) = rm. Temporarily
viewing M as an Abelian group, we know that there is a monomorphism of
Abelian groups, 8 : M — @ of M into an injective Abelian group Q’; apply-
ing the functor Homz (R, —) we get a monomorphism 3 : Homz(R, M) —
Homgz(R,Q@'). By Lemma A3.8 the module Homz(R, Q') is an injective
R-module. Thus #’a is a monomorphism of M to an injective module, as
desired. U

If M is an R-module, then by Corollary A3.9 we may embed M in an
injective module Qy. We may then embed the cokernel, Qo /M, in an injec-
tive module Q;. Continuing in this way, we get an injective resolution

0-M Q) —0Q1 —>Qy— -+

of M; that is, an exact sequence of the given form in which all the Q;
are injectives. We shall see how such resolutions are used in the upcoming
section on derived functors.

Example. The most familiar injective modules are the divisible Abelian
groups. Perhaps the simplest interesting injective resolution is that of Z as

a Z-module:
0-Z-Q—-Q/Z—0.

In general, injective modules have an interesting and simple structure; see
the exercises for more information.

In Chapter 20 it is shown that if R is a local ring then every finitely
generated R-module has a unique minimal projective (actually free) res-
olution. The situation for injective modules is much better: Any module
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over any ring has a unique minimal injective resolution! The key idea is
that of injective envelope (or injective hull). First a preliminary defi-
nition:

Let R be a ring and let M C E be R-modules. We say that M is an
essential submodule of F, or that.E is an essential extension of M if
every nonzero submodule of F intersects M nontrivially.

Proposition—Definition A3.10. Let R be a ring.

a. Given any R-modules M C F, there is a maximal submodule E of
containing M such that M C E is essential.

b. If F is injective, then so is E.

c. There is, up to isomorphism, a unique essential extension E of M that
s an injective R-module; this E is called the ingective envelope of
M, written E(M).

Proof.

a.If M Cc £y, C E; C --- C F with M C F; essential, then any
submodule N of U;E; meets some E; nontrivially, and thus meets
M nontrivially. Thus M is essential in UFE;. Since M is essential in
M, it follows by Zorn’s lemma that there exist maximal essential
extensions of M contained in F.

b. Suppose now that F' is injective, and M C E C F with M C E a
maximal essential extension of M by a submodule of F'. If E’ were an
essential extension of E in F', then any nontrivial submodule of E’
would meet F, and thus M, nontrivially, so £’ would be an essential
extension of M and so E' = E by hypothesis. It thus suffices to treat
the case where M = E. Let N be a submodule of F' maximal among
those not meeting E; such submodules exist by Zorn’s lemma. Since
F and N do not meet, we see that E® N = E + N C F. We shall
show that F'= E + N, from which it follows that E® N =2 F,so
is injective.

Consider the composite map a: £ C F' - F/N. Because N does
not meet E, o is an inclusion. It is essential, for if a submodule N’ of
F/N failed to meet E, then its preimage in F would be a submodule
larger than N and not meeting F, contradicting our hypothesis. Since
F' is injective, we may find a map 3 : F/N — F extending «a. Since
(kerf) N E = kera = 0, and E is essential in F/N, we see that
ker 3 = 0. In particular, 8(F'/N) is an essential extension of E. It
follows from the maximality of E that 3(F/N) = E, so F/N = E,
and £ + N = F as desired.
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¢. By Corollary A3.9 there exist monomorphisms from M to an injec-
tive R-module F. From parts a and b we see that a maximal sub-
module £ C F, such that M C FE is essential, is injective too.

For uniqueness, suppose that a1 : M — FE; and ag : M — F»
are both essential inclusions, with £; and Es injective, then by the
injectivity of F5 there exists a map 3 : E; — F» extending a9 in the
sense that the following diagram

E)
M
B
N
E,

commutes. Since ker 8|y = keray = 0, and a; (M) is essential in Ej,
we see that ker 3 = 0. Thus B(E;) is an injective submodule of Fj.
It follows that Ey = 3(E,) @ Ej for some submodule Ef of Ej. Since
as(M) is essential in Fq, and a(M) C B(F;), we must have Fj} = 0,
and (3 is the required isomorphism. O

M

We now say that an injective resolution

(*) 0—)M‘—+Q0—>Q1—)Q2—>

is a minimal injective resolution if, setting M; = coker(Q;-y — Q;), we
have Q;41 = E(M;), and the map Q; — Qi1 to be the composite of the
natural maps

Qi = M; — E(MJ = Qiys-

As an immediate consequence of Proposition A3.10 we have:

Corollary A3.11. If R is any ring and M is any R-module, then M has
a unique minimal injective resolution. ad

A8.4.1 Egxercises
Injective Envelopes

Exercise A3.1: The following principle was used several times in the text:
Show that if N C M is an essential submodule then any map M — FE of
modules that restricts to a monomorphism on N is a monomorphism.

Injective Modules over Noetherian Rings

Exercise A3.2 a. (Bass’ Characterization of Noetherian rings):*
Show that arbitrary direct products of injective modules are injective.
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Show, however, that a ring R is Noetherian iff every direct sum of injective
R-modules is injective. (This observation from Bass’ graduate student days
appears, with reference to Bass, in Chase {1960].)

b. Again, assume that R is a Noetherian ring. Use part a to show that
any injective module is a direct sum of indecomposable injective modules.

Exercise A3.3 (Injectives and primes): We shall say that an injective
module F is indecomposable if it cannot be written as a direct sum F =
E'® E” with both E and E” nonzero. Suppose that R is a Noetherian ring.
Use primary decomposition to show that if £ is an indecomposable injective
R-module, then £ = E(R/P) for some prime ideal P of R. Show that if
P and @ are primes, then F(R/P) = E(R/Q) iff P = Q. Thus there is
a one-to-one correspondence between indecomposable injectives and prime
ideals. .

A

Exercise A3.4: We can compute injective envelopes in some simple cases:

a.* Let R be a Noetherian ring and let P be any ideal of R. Set E =
E(R/P). For any ideal I C R and map ¢ : I — R/P, use the
Artin-Rees lemma (Lemma 5.1) to show that there is a number d
such that ¢ factors through I/(P?N1T) = (P? 4 I)/P?. Deduce that
E' = Uy(0 :p P?) C E, the set of elements annihilated by some power
of P, is injective, and thus that £ = F’.

b.* With notation as in part a, suppose that P is a maximal ideal. Show
that (0 :p P?) is the injective hull of R/P over the Artinian ring
R/P?. By Corollary 21.3 it is a module of the same finite length as
R/ P4,

c. Let R=k[z1,...,z,),andlet P = (z1,...,2,). Let E = @, Homy(Ry,
k) be the graded dual of R. We have £ C E; := Homy(R, k) =
11; Homy (R4, k), which is an injective R-module by Lemma A3.8.
Show that F is an essential extension of K =Homyk, k) C Homy R, k).
Show that E = Uy(0 :5, P?). Conclude from part a that E is the
injective envelope of k.

d. Show that the indecomposable injective Abelian groups are Q and,
for each prime p, the group

Z/p™ =lim (Z/p C Z/p* C Z/p* C ---) = Z[p"']/Z.
Show that Q/Z =~ @,Z/p™.

What is the injective resolution of Z/p as a Z-module?

Exercise A3.5 (Graded injective modules and injective graded
modules): Let R = ®4R,y be a Z-graded ring. If M = ®©M, is a graded
R-module, and F is an Ry-module, we write
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Homg, (M, E) := &, Homp, (Mj, E).

This is a graded R-module, and is generally much smaller than
HOIIlRO (M, E) = Hd HOTI]R0 (Md, E)

a. Show that if E is an injective Ryp-module then @ = Homg, (R, F) is
an injective in the category of graded R-modules in the sense that
() satisfies the definition given in the text whenever N and M are
graded modules and « is a homomorphism of graded modules. (One
way to do this is first to prove an analogue of Lemma A3.4). Conclude
that every graded module has a graded-injective resolution.

b. Let R = k[z], where k is a field. Show that k[z,z7!] is injective in
the category of graded R-modules. Show that in the category of all
R-modules, k(z) is the injective hull of k[z]. Conclude that k[z,z~]
is not injective in the category of all R-modules, and that in fact there
is no degree-preserving inclusion of R into a graded module that is
injective in the category of all modules.

c. Suppose R = @4>9R; is a positively graded Noetherian ring, and
that Rp is a field. Extend the method of Exercise 3.4¢ to show that
Homg, (R, k) is the injective hull of k = Homy((R/ @4>0 Ra4), k) in the
category of all R-modules, not just the category of graded R-modules.

Exercise A3.6 (Injective envelopes and primary decomposi-
tion): Still assuming that R is Noetherian, let M be any finitely generated
R-module.

a. Let P be a prime. Show that if @ : M — E(R/P) is any map, then
ker a is a P-primary submodule of M.

b.* Show that the injective envelope F(M) is a finite direct sum of inde-
composable injectives. Let M — E(M) = @E(R/P;) be the injec-
tive envelope of M. Show that if P is a prime ideal and if M(P)
is the kernel of the composite map M — E(M) = &E(R/P;) —
@p-pE(R/P;), then M(P) is P-primary. Show that 0 = NM(P) is a
primary decomposition of 0, and that the set of P that occur among
the P, above is precisely the set Ass(M).

Exercise A3.7 (More on the Noetherian property): Let R C S be
rings, and suppose that S is finitely generated as an R-module.

a.* Let F' be an R-module. Show that F' is injective as an R-module iff
Hompg(S, F) is injective as an S-module.

b. (Eakin’s Theorem) Use part a and the criterion of Exercise A3.2 to
show that R is Noetherian iff S is Noetherian. (This result is due
to Eakin [1968]; the argument is from Eisenbud [1970]. A direct and
more general proof was given by Formanek [1973] and is reproduced
in Matsumura [1986, Theorem 3.6].)
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A3.5 Basic Constructions with Complexes

A3.5.1 Notation and Definitions

To simplify the notation in what follows, we think of R as a trivially graded
ring—that is, the degree = 0 part is R and all the other homogeneous
components are 0. If

+1 23
F:..._) Z+1¢_+>Fl.....) i_1_>..-

is a complex, we think of F as a graded R-module (the degree-i component
of F' is F;) together with an endomorphism ¢ of degree —1. As usual we
shall make the convention that maps of graded modules have degree 0 unless
otherwise specified: Writing F'[i] for the graded module obtained from F
by the rule F[i|; = F;.;, we could also have said that ¢ is a map from F
to F[—1]. Often the grading does not matter, and we define a differential
module (F, ¢) to be an R-module F' with an endomorphism ¢ such that
¢* = 0. As for complexes, we define a cycle of F' to be an element of ker %
and a boundary of F' to be an element of im ¢.

Definitions. Let F' be a complez as above. The ith homology module of F
is defined to be

Hi(F) = ker g;/im ;1.
We sometimes write H(F) for the direct sum ®;H;(F) of all the homology

modules. If F' 1s simply a differential module, with differential ¢, then we
set H(F') = kerp/im; in case F' is a complex, this is again &;H;(F).
We say that the complex (or differential module) F' is exact if H(F) = 0.
A complex

F: .- — ,H_lf-zigl'_;'ﬁ) Z—_I—)--'ﬂ)FO
is called a (left) resolution (of Hy(F') = coker¢y) if H;(F) = 0 for all

i > 0. (It is sometimes convenient to regard F' as continuing to the right
forever with 0 maps and modules, thus:

1+1 3 ¥
F:. . Z.H‘p_hpii, 1o S = 050> )

If the F; are projective (respectively, free), then such a resolution is called
a projective (respectively, free) resolution. Dually, a complex

Iffo——)f_l — "'I—i+1 -—-—-)I_,; *—#I_i..l

is called a (right) resolution if its only nonzero homology is Hy(I) =
ker gp. A right resolution is called an injective resolution if all the I; are
injective modules.
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A3.6 Maps and Homotopies of Complexes

Projective (or free) resolutions of modules are in general far from unique
(though over a local ring minimal resolutions of finitely generated modules
are unique up to noncanonical isomorphisms—see Chapter 20). Thus, if we
are to examine modules by studying their resolutions, it is necessary to ask
what connects two different resolutions of the same module. This question
turns out to have a simple answer. The necessary idea is useful in a more
general form.

Definition. If (F, ) and (G,1) are differential modules, then a map of
differential modules is a map of modules o : F' — G such that ap = Pa.
If F' and G are complezes, then we insist that o preserve the grading as
well. Explicitly, if

F: ... i+l&ﬂ)ﬂﬂ> i1 — -
and
P )
G: o =G 286 G, -

are complezes of modules, then a map of complezes a : F' — G is a collec-
tion of maps

(8730 E — Gl
of modules making the diagrams

©,
v ey E BRI i1 — -

azl la,-_l

--——-)Gi—igi_]_—)-'
commutative.
If a : (F,p) — (G,¢) is a map of differential modules, then o carries
ker ¢ to ker 1 and im ¢ to im1p. Thus o gives rise to an induced map on
homology, which we also call a:

Ifa: F — G 1is a map of complezxes, then the grading is preserved, and we

get
ker p; ker 1;
—

imp;+;  imyiy

[ 73 H,F = == H,G

When do two maps of a complex F' to a complex G induce the same
map on homology? This is a subtle question in general, but there is a very
important sufficient condition that may be given in terms of equations.
This sufficient condition is called homotopy equivalence.
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Definition. If o, 3 : (F,¢) — (G,1) are two maps of differential modules,
then o is homotopy equivalent to 3 (or simply homotopic to 3) if there
is a map of modules h : F — G such that oo — 3 = yYh+he. If F and G are
complezxes (so that F' and G are graded modules and ¢ and 1) have degree
—1), then we insist that h have degree 1:

AN

l

Note that « is homotopy equivalent to 3iff &« — 3 is equivalent to 0.

The homotopy terminology comes from topology: If o and j are continu-
ous maps from a space X to a space Y, then they induce maps of complexes
from the (say, singular) chain complex of X to that of Y. A homotopy
H:X xI —Y from o to 3 determines a chain map h(z) := H(z x I)
that raises dimensions by 1. If we orient everything appropriately, we get
a(z) — B(xz) = 8(h(x)) — ho(z)) as in Figure A3.2:

>
* A h(z) = H(x x I);

B ‘ HxxI) / ar Oh(z)=az —u— Bz +v;

h(éx)= Hbx x I) =u — v;
o — Bz =0h(z) + h(0x).

-/
FIGURE A3.2.

One of the fundamental properties of homotopic maps in topology is that
they induce the same map on homology. The topological proof works by
considering the map A on the level of chain complexes. It generalizes imme-
diately to the following algebraic form.

Proposition A3.12. If o, 8 : (F,¢) — (G, 1) are two maps of differential
modules, and o is homotopy equivalent to 3, then o and 3 induce the same
map on homology.

Proof. It suffices to show that o — 3 induces the map 0 on homology. Thus
we may simplify the notation by replacing o by o — 3, and assume from
the outset that 3 = 0. Let h be the homotopy, so that & = ¢¥h + he.
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) P
m > = Fp Fpb = M
hi ho
) oy o B

-— G — G — Gy M N
Y, YV,

Let z € ker ¢ be a cycle of F'; we must show that a(xz) is a boundary of
G. From the formula for the homotopy h we get

a(z) = p(h(z)) + hp(2)) = P(h(z)) + h(0) = 1 (h(z)),

as desired. (]

An important idea in homological algebra is that one can usefully replace
a module with a projective (or dually an injective) resolution. Suppose that
F and G are projective resolutions of modules M and N. It turns out that
maps from M to N are the same thing as homotopy classes of maps from
F to G. An equally useful dual statement, with injective resolutions, can
be proved by “dualizing” the following argument; we leave the formulation
and proof to the reader.

Proposition A3.13. Let
F: . .-F*F . -F2F

and
G: G0 -GGy

be complexes of modules, and set M = coker ¢p; = HyF, N = cokeri); =
HyG'. If the modules F; are projective and the homology of G vanishes except
for HyG = N, then every map of modules 3 : M — N is the map induced
on Hy by a map of complexes o : F — G, and « is determined by 8 up to
homotopy.

Proof. Both the existence and the homotopy uniqueness of a are proved by
induction; we give the first step and leave the (easy) continuation to the
reader.

Existence: Since Gy maps onto N, the composite map F;, - M — N
may be lifted to a map oy : Fy — Gp. It is immediate that oagp; maps
Fy to ker(Gy — N) = im(G; — Gy), so agpy has a lifting oy : F} — G;
continuing in this way we get the map of complexes a:

Homotopy uniqueness: If we are given two maps a and o’ of complexes
lifting the same map B : M — N, then subtracting we see that a — o
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is a lifting of the zero map. Thus, changing notation, it suffices to show
that if « is a lifting of the zero map, then o is homotopic to zero, that is,
a; = hi—1p; + 1¥i+1h; for some maps h; : F; — G;,1. First, since a4 induces
zero : coker p; — coker)q, it takes Fp into imey. Thus there is a lifting
ho : Fy — G4 such that ¥1hg = ay. Now

P1(hopr — o) = a1 — YProq =0,

s0 hgyp1 — crp maps into ker 1, = im ). Since F is projective, we may lift
this to a map h; : F1 — G5. Continuing in this way we get the desired
homotopy.

We can at last give the answer to the question with which we began, of
what connects different projective resolutions of a module. For later use,
we give a version with a functor in it. Recall that a functor F' from a
category of modules to another category of modules is called additive if
it preserves the addition of homomorphisms: That is, if a, b : M — N
are homomorphisms, then F(a +b) = F(a) + F(b) : FM — FN. This
is the property that we need in order that F' preserve homotopy equiva-
lences.

Corollary A3.14.

a. Any two projective resolutions P and P’ of the same module are
homotopy equivalent in the sense that there are maps o : P — P’
and B : P' — P such that af3 is homotopic to the identity map of P’
and Bo 18 homotopic to the identity map of P.

b. If F is any additive functor and we write FP, F'P' for the results of
applying F to the complexes P and P’, then for each i the homology
modules H;(FP) and H;(FP') are canonically isomorphic.

Proof.

a. Suppose that P and P’ are projective resolutions of a module M.
By Proposition A3., there are maps @ : P — P and 3 : PP - P
of complexes inducing the identity map on M. The composites af :
P’ — P’ also induces the identity map on M. But the identity map
P’ — P’ induces the same map on M, so a3 is homotopic to the
identity by the other part of Proposition A3.13. Of course the same
argument holds for Sa.

b. Suppose « is as above, and fix an index i. We claim that the map
H,(Fa) : H;(FP) — H;(FP’) is a canonical isomorphism—that is,
an isomorphism independent of the choice of a.
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First, if o/ : P — P’ were another choice of a map of complexes
inducing the identity on M, then by Proposition A3.13 « is homotopic
to o/, say by a homotopy s with o — o/ = ds + sd, where d denotes
the differential both in P and in P’. Applying F, we get Foo— Fo/ =
FdFs + FsFd, so Fa and Fo! induce homotopic maps FP — FP'.
By Proposition A3.12, the induced maps H;(Fa) and H,(Fo') are
the same.

Next, to see that H;(Fa) is an isomorphism, note simply that
H,(Fa)H;(FB) = H,F(af) = 1 because af is homotopic to the
identity, and the same argument works for H;(F3)H;(Fa). O

A3.7 Exact Sequences of Complexes

Ifa:F' — Fand 8: F — F” are maps of complexes, with Ba = 0, then
we say that

0o-F2F 2 F Lo
is a short exact sequence of complexes if for each 7 the sequence
/ o ﬂl H
0 F 25 F 25 F 0

is exact. Given such a short exact sequence, we get induced maps «a; :
H;F' — H;F and g, : H;F' — H;F". Somewhat more surprisingly, we get a
natural map

62' . HZ'F” — Hi_lF,

called the connecting homomorphism, defined as follows: Write ¢/, ¢,
and ¢” for the boundary maps of F', F', and F”, respectively. If h ¢ H; F"
we choose a cycle € ker ¢! whose homology class is z. Let y € F; be
an element such that 3;(y) = x; such a y exists because §; is surjective.
Since Bi_1¢:(y) = ¢/ Bi(y) = ¢} (x) = 0, there is an element z € F]_; such
that a;_1(2) = @i(y). Since a;_2 is a monomorphism and a;_2¢._,(2) =
pi-10u-1(2) = pi—1pi(y) = 0, we see that z is a cycle of F'. We define §;(h)
to be the image of z in H; 1 F" (see Figure A3.3).
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y —/» =z
0—>F — F| — F' 0

0=F., —» F, — F') = 0

FIGURE A3.3.

A3.7.1 FEzxercises

Exercise A3.8: Show that §;(h) is independent of the choices made in the
definition, and é; is a map of modules.

Exercise A3.9: A parallel construction works for exact sequences of differ-
ential modules; give it explicitly. The case of complexes becomes a special
case if we remark that in the case of complexes the connecting homomor-
phism can be taken homogeneous and of degree —1.

6i+2
> Hiv (F) % Hiw (F) E’ Hign F) —
dis
@ o B
d;

FIGURE A3.4.

A3.8 The Long Exact Sequence in Homology
Proposition A3.15. If

(+) 0= F 2 F 2
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is a short exact sequence of complezes, then the sequence shown in Figure
A3.4, called the long exact sequence in homology of (x), is exact.
More generally, if (¥) is a short exact sequence of differential modules,
then the connecting homomorphismn makes the following triangle exact (in
the sense that the image of each map is the kernel of the next map).

HF —> p» HF

N

H "
Proof. We leave the easy verification to the reader. O

Extending the principle embodied in Proposition A3.13, that phenom-
ena regarding modules are well reflected in projective resolutions, we now
show that a short exact sequence of modules corresponds to a short exact
sequence of projective resolutions in a certain natural sense.

Proposition A3.16. Let
oMMt Mo

be a short exact sequence of modules. If

¥ ¢
F’: --'ﬁFi—ﬁFiyl'--—)Fl—l)Fo,

and
1 4
. ... F i) oL n Ol E
e | — Iy —

are projective resolutions of M’ and M", respectively, then there is a pro-
jective resolution F of M and a short exact sequence of complezes

0= F 2“5 F % F" 50

such that o and « induce the maps 3 and (3, respectively.

Note that because the F!" are projective, it follows that F; = F; @ F}’ for
each i. However, the differentials ¢, : F; — F;_; of F will generally not be
the direct sums of ¢} and ¢/

Proof. Again, we only describe the beginning of the induction, leaving the
rest to the reader. Because F{ is projective the map from it to A" can be
lifted to a map Fj — M. Of course we also have a composite map Fj —
M’ — M. Taking the sum of these maps we get a map Fy := F{@ Fj — M,
and it is easy to check that this is an epimorphism. Replacing M’ M, and
M" by the kernels of the maps F;, — M', Fy — M, and Fj — M’
respectively, we may repeat this argument. ad
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A3.8.1 FEzrercises
Diagrams and Syzygies

Exercises A3.10-A3.12 are three arguments with diagrams that come up
so frequently that they have acquired names.

Exercise A3.10 (Snake Lemma):* If

00— A — B — C — 0
o B Y
00— A — B - — 0

is a commutative diagram of modules with exact rows, show that there is
an exact sequence

0 — ker & — ker 3 — ker~y — coker a — coker 3 — cokery — 0.

Show that if we drop the assumptions that A — B is a monomorphism and
that B’ — C' is an epimorphism, then the six-term sequence is still exact
except at the ends.

Where is the “snake”? Look at Figure A3.5.

| J @ o
o o ®
|
® ® ®
[ L L

FIGURE A3.5.
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Exercise A3.11 (5-Lemma): If
A] — A2 _ A3 — A4 —_— A5

oy B1 Y B2 (v5)

B - B, —-— B3 — By — Bs

635

is a commutative diagram of modules with exact rows, show that if 5, and
B2 are isomorphisms, a; is an epimorphism, and ay is a monomorphism,
then « is an isomorphism. This is often applied when A;, By, A5, and Bj

are 0.

Exercise A3.12 (9-Lemma): Suppose that the diagram in Figure A3.6

0

o
o

l
b
l
l
l

l
l

o T -——

=

l

l

C #— N C— O -
l
=

l
l

S - > - > -————

l

-

0
FIGURE A3.6.

is a commutative diagram of modules with exact columns, and exact middle
row. Show that if either0 A —> B —-C -00or0 - A" - B" - C" -0

is exact, then both are.

Exercise A3.13 (Schanuel’s Lemma):* Show that if

O—-Np—>F—->M-->0
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and
0——>NG—>G~+M~—>O

are exact sequences with F' and G projective, then
NF@ngeI'(FEBG——*M)gNGf@F,

where the map in the middle expression is the sum of the two given maps
F— Mand G— M.

The module Ny is usually called a first syzygy module of M, and its
uniqueness “up to projective summand” is another way of saying in what
sense the projective resolution of M is unique. (The nth syzygy module
is defined inductively as the first syzygy module of the (n — 1)st syzygy
module. Since the first syzygy module of a direct sum may be taken to be
the direct sum of the first syzygy modules, all the syzygy modules of M
are uniquely defined up to projective summands.)

Exercise A3.14: Let R be a ring and let
F. o s Fp—>- -5 F->M-=0

be a projective resolution of M. Let d be the smallest number such that
im(Fy — Fy_,) is projective. Use Schanuel's lemma (Exercise A3.13) to
show that d is independent of the resolution chosen, so that d = pd M.

A3.9 Derived Functors

One of the main applications of projective and injective resolutions is defin-
ing derived functors. The idea is this: Often one has a functor F (say, for
simplicity, from R-modules to R-modules) that is additive and that takes
short exact sequences

0-A—-B->C-—=0

of modules into sequences that are exact only at one end, say at the right:
FA—-FB — FC — 0.

Such a functor is said to be right-exact; an example is the functor M@z —,
which takes an R-module to its tensor product with a fixed R-module M.
(If the sequence is only exact on the left, we speak of a left-exact functor;
an example is Homgz (M, —). We shall stick with right-exact functors in the
description that follows, and remark on the dualization to the left-exact case
at the end. The reader should be warned that we shall apply both notions.)

If F is an interesting right-exact functor, then it is generally interesting
to have a description of when a zero can be added on the left end of the
right-exact sequence

FA—-FB—->FC—-0
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and still have an exact sequence; or more generally, to have a good descrip-
tion of the kernel of the left-hand map. Derived functors provide this. In
the situation above, for example, there is a “first left-derived functor L; F”
and a map 6 : L; F(C) — FA such that

LiF(C) > FA— FB —FC —0

is exact. (Here 6 must depend on the short exact sequence given, but the
module L, F(C) does not!) Of course, one should then ask about the kernel
of 4. In fact, the theory provides a whole sequence of left-derived functors,
which answer the sequence of questions beginning in this way:

Definition. Suppose F is a right-exact functor on the category of R-
modules. If A is an R-module, let

P ..._,pi_‘!iL,Joi_l..._,pl_fl_,po

be a projective resolution of A, and define the ith left-derived functor
of F to be L;F(A) = H;FP, where F P is the complex
FP: - - Fp, 2% Fp_ ... . FP, 5% Fpy,

the result of applying F' to P.
We have:

Proposition A3.17. The left-derived functors of F are independent of the
choice of resolution and have the following properties:

a. LoF = F.
b. If A is a projective module, then L;F(A) =0 for all i > 0.
c. For every short exact sequence
0—-A—-B-C—0,
there is a long exact sequence as shown in Figure A3.7.

d. The “connecting homomorphisms” é; in the long exact sequence are
natural: That s, if

0 - A - B — C — 0

Lol ]

0 - A - B - C -0

is a commutative diagram with exact rows (a “map of short exact
sequences”) then the diagrams

LinFC ¥ L,FA

L1+1F7l leFa

L FC' 25 LiFA

commute.
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6i+2
LigF LinF
e L F(A) 2 L FB) 2 Lin F©O) —— .
+]
L, F L,,F v
L LA Y LFB) 22 LFC) ——
0;

-

FIGURE A3.7.

Proof. The independence of resolution is the content of Corollary A3.14b.

a. To show that LoF(A) = F(A), just use the right-exactness of F"

From the definition
LoF(A) ZH()( - FP1 —4FP[)),
we get LoF(A) = coker FP; — FP, = FA.

This is immediate from the independence of resolution, since if A is
projective then we may take as projective resolution the complex

> 0—-0-—> A

This is immediate from Propositions A3.15 and A3.16.

Form the projective resolutions of each of the two short exact
sequences as in Proposition A3.16. The maps «, 3, and ~ lift to com-
parison maps between these resolutions. If we use these maps of res-
olutions to define the maps L;F(«a) and L;F(/3), then the verification
of the commutativity of the diagram in part d is easy. We leave the
details to the reader. 0

Dually, if F is a left-exact functor, then we define the right-derived func-
tors R'F of F: If A is a module, we let

Q:0—-Q—Qy— -

be an injective resolution of A, and we set

R'F(A) = H.(FQ),

where F'() is the complex

FQ:0-FQy— FQ_1 — ---

Proposition A3.17 dualizes to this setting.
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A3.9.1 FEzxercise on Derived Functors

Exercise A3.15:* Show that the conditions of Proposition A3.17 charac-
terize the functors L; F.

A3.10 Tor

Let A be an R-module. The left-derived functors of the functor M Qz — are
called Tor®(M, —). The tensor product itself is commutative in the sense
that M g N =2 N ®gr M, and this property carries over to the Tor;, as
we shall prove in the section on spectral sequences. Thus Tor® may be
regarded as a functor of two variables, Torfz(—, —), and we get long exact
sequences from short exact sequences in either variable. When the ring R
is understood, we suppress it from the notation. We give a few very useful
computations as exercises; the reader is urged to do at least the first three.

A3.10.1 FExercises: Tor

The name “Tor” comes from the following computation, which connects
Tor with torsion.

Exercise A3.16:* Let z € R be a nonzerodivisor. Show that

Tory(R/z,M) = {m € M|zm = 0.}

Exercise A3.17: If I and J are any ideals of R, then IJ C I N J. Show
that Tor;(R/I,R/J) = (I N J)/(IJ). This usefully encapsulates several
often-used cases (of course these can also be proven directly). For example,
use it to show that I N J = IJ in the following cases:

a. I +J—=R.

b. I is generated by a sequence of elements that form a regular sequence
mod J.

Exercise A3.18 (“Betti” numbers): Let (R, m) be a local ring. We say
that a free resolution

Pi+1 [z ¥1
F:-.»Funu—F-—>F_ - —F

of a module M is minimal if each ¢; has an image contained in mF;_;. (If
the F; are finitely generated modules, then Nakayama’'s lemma shows that
this is equivalent to a more obviously natural formulation. See Chapter 20.)
If F as above is a minimal free resolution of M and rank F; = b;, then show
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that Tor;(R/m, M) = (R/m)%. The b; are called Betti numbers of M, in
loose analogy with the situation in topology, where F' is a chain complex.

Exercise A3.19 (Serre’s Intersection Formula): Let X and Y be
subvarieties of A}, of dimensions d and n — d, defined by ideals I and
J C klzy,...,z,] = S, and suppose that XNY has the origin 0 as an isolated
point. A crucial part of algebraic geometry is devoted to the question, in
this and similar cases, of defining an “intersection multiplicity (X, Y;0)
of X and Y at 0” that will have desirable properties. If X and Y are
themselves nice (for example, nonsingular at 0), then this is not too hard;
writing R for the localization of S at (zy,...,z,), the right answer turns
out to be the vector space dimension of R/I ®r R/J = R/(I + J). Such
a formula is correct also in the case of plane curves, but in general the
dimension of R/(I+ J) turns out only to be the first term of an alternating
sum. The following definition is due to Serre [1957]:

i(X,Y;0) := Y (=1) dimy Tor} (R/I,R/J).

J

Show that TorJR(R/ I,R/J) is annihilated by both I and J, and therefore
has finite length. Let v = 4, and take I = (z1,22) N (z3,24), the ideal
corresponding to the union X of two two-planes, meeting in the point 0,
and J = (z) — z3, 29 — x4), the ideal corresponding to another two-plane Y,
transverse to each of the first two and meeting them at the origin. Compute
the Tor]R(R/I, R/J) and show that i(X,Y;0) = 2. Note that Y meets each
of the two-planes in X transversely in a single point (multiplicity 1) so Y’
“should” meet X with multiplicity 2; however, the length of R/I@r R/J =
R/(I +J) is not 2.

Exercise A3.20 (Tor as an algebra): For any R-modules A, A’, B, B,
define a natural “external multiplication” map

e : Torf (A, B) @ Tor®(A', B') — Tork

m4n

(A ®R Ala B ®R B,)

as follows. Let P and P’ be projective resolutions of A and A’. Represent
elements o, 8 of Tor® (A, B) and Torf(A’, B') as cycles of the complexes
P®B and P’'® B’ (where for simplicity we write ® for ®g). Show that a® 3
is then naturally a cycle in the tensor product complex (PR B)®(P'®B’) =
P® P'® B® B'. (Here the tensor product of two complexes may be defined
as the total complex of the double complex with terms P,® B® P;® B'—see
the section on double complexes below if this is unfamiliar.) If P” is a free
resolution of A ® A’ there is a map of complexes P ® P — P” inducing
the identity on Hy = A® A’. Use this to define e.

If A and B are R-algebras, take A’ = A and B’ = B and combine the
map above with the multiplication maps of A and B to get a multiplication
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1 : Tor®(A, B) ®g Tor?(A, B) — Tor”

m-+n (Av B)

Show that this makes Tor®(A, B) into a graded associative R-algebra that
is “graded-commutative” in the sense that for elements «, 3 of degrees a
and b we have

Ba = (—1)%ag.

Remarks: A good deal of work has been done on the structure of this
algebra in the case where A = B = k, the residue class field of a local ring
R. In that case Tate and Gulliksen showed, for example, that Tor®(k, k) is
a free graded-commutative divided power algebra (that is, the tensor prod-
uct of a divided power algebra on even degree generators and an exterior
algebra on odd degree generators). It was hoped for a long time that the
“Poincaré series” of R, namely the power series

Pr(t) =) _ dimg(Torf (k, k))t",

would be a rational function of ¢, but Anick [1982] showed that this is false
in general. The hope behind this hope was perhaps that the ranks of the
free modules in a minimal free resolution of k are “finitely determined.”
It remains an open problem to give a description simpler than the one
obtained by computing the minimal free resolution.

One important point in this development is that the algebra structure
on Tor can be computed from a resolution that is an algebra in a nice
way:

Exercise A3.21: Let R be a ring with augmentation onto a factor ring
R — k. Suppose that

P ....Lpl__‘LPO

is a projective resolution of k over R, with Py = R. Suppose that the
complex P has an algebra structure such that d is a derivation, d(pq) =
d(p)q + (—1)%pd(q). Show that this algebra structure induces the natural
algebra structure on the homology Tor(k, k) = H.(P ® k).

Exercise A3.22 (Auslander’s Transpose Functor): The long exact
sequence in Tor is not the only answer to the question of how to measure
the inexactness of the functor ®. Suppose that M is a finitely presented
R-module. Following ideas of Auslander {1966], we define the transpose
of M as follows:

Let ¢ : ' — G be a projective presentation of M —that is, a map of
projective modules with cokerp = M. Write —* for Hompg(—, R), so that
¢* : G* — F* is the “transpose” of ¢. Define T'(¢), the transpose of M, to
be T(p) = coker p*.
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a.* Show that like the first syzygy of M, T'(¢) depends, up to a projective
summand, only on M in the sense that if ¢’ is another projective
presentation of M, then there are projective modules P and P’ such
that T(p) ® PP = T(¢') ® P.

Notation: We shall write 7'(M) for any (fixed) choice T'(¢). We may choose
things so that T(T'(M)) = M.

b. Show that if
a:0-A—-B-C-—->0

is a short exact sequence of R-modules, and M is a finitely presented
R-module, then there is an exact sequence

0 — Hom(T' (M), A) — Hom(T (M), B) — Hom(T(M),C) —
M®A->MB->MQ(C —D0.

This sequence gives another way of “measuring” the inexactness of
the functor M ® —. If N is any module, and we choose M = T(N),
then since T(T(N)) = N, we may also think of it as a measure for
the inexactness of Hom(N, —).

c. Here is an application: We say that A C B is a pure R-submodule
if for every module M the induced map M g A — M Qg B is a
monomorphism. Show that if « : 0 - A — B — C — 0 is a short
exact sequence with A — B pure, and if N is a finitely presented
R-module, then

Hom(N, ) : 0 - Hom(N, A) — Hom(N, B) — Hom(N,C) — 0

is a short exact sequence. Deduce that if C is finitely presented, then
a splits. Note that it is even enough to know that N® A - N ® B
is a monomorphism for every finitely presented module N. (This is
actually the same as purity, since every module is the filtered direct
limit of finitely presented modules—see Exercise A6.5.)

A3.11 Ext

We now turn from ® to Hom. The functor Homg(M, —) is left-exact, so we
may apply the dual theory, the theory of right-derived functors, as follows:
For any R-module N, let

I:Io—>[1—>"'
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be an injective resolution of N, and define the right-derived functor
R'Hom(M,—)(N), which we shall write more compactly as ExthL(M, N),
to be H_j(Homp(M, I)), where Hompg(M, I) is the complex

Homp(M,I) : 0 - Homg(M, Iy) — Homg(M, ;) — --- .

As we shall prove by spectral sequences later (another proof, done by iden-
tifying both results with the “Yoneda Ext,” is given in the exercises), we
could also compute this from a projective resolution

F:...oF -k

of M as Extly(M,N) = H_;(Hompg(F, N)), where Homg(F, N) is the com-
plex

Hompg(F,N) : 0 —» Homp(Fp, N) — Hompg(F;,N) — --- .

Here is a classic application of Ext, due to Auslander, showing that the
global dimension of a ring can be computed from finitely generated mod-
ules—even from cyclic modules. The original proof used a direct limit argu-
ment; the proof given here, using injective modules, is due to Serre. The
result is very general: It holds for non-Noetherian rings too, and even for
noncommutative rings if we specify left or right modules and ideals through-
out.

Theorem A3.18 (Auslander [1955]). The following conditions on a ring
R are equivalent:

a. gldim R < n—that is, pd M < n for every R-module M.
b. pd R/I <n for every ideal I.
c. tnjective dimension N < n for every R-module N.

d. Exty(M,N) =0 for alli > n and all R-modules M and N.

Proof.
a = b is trivial.
b = ¢: Suppose that condition b holds and let

0O-N->EFEy—---—>E,_1—-X->0

be an exact sequence with the E; injective; we shall show that
X Is injective, proving c. Breaking the long exact sequence
above into short exact sequences, and considering the long exact
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sequences obtained from these by applying Ext,(R/I, —), we see
that
Exth(R/I, X) = Ext% (R/I, M) = 0,

the last equality coming from the hypothesis b. Thus it suffices
to show that a module X is injective if Extk(R/I, X) = 0 for all
ideals I. Computing Ext;(R/I, X) from a projective resolution
of R/I, we see that this hypothesis is equivalent to saying that if
¥ : I — X is any map, then there is a map R — X such that the
composition I — R — X is 9. By Lemma A3.4, X is injective.

¢ = d: Compute Extp(M, N) from an injective resolution of N.

d = a: Assume that condition d holds, and let
0O X—-F,—----—sFkK->M=>0

be an exact sequence with the F; projective. It will suffice to
show that X is projective. Applying the long exact sequences in
Ext to the short exact sequences

0—ker(Fiyy —» F,) > F, - ker(F;, - F,_{) —» 0
obtained from this resolution, we see that
Exth(X,N) 2 Extt (M, N) =0,

for every module N. We shall show that this condition implies
that X is projective. (Note the duality of this with the preceding
argument —but here there is no restriction on N, and the proof
is easier.)

To this end we must show that if
PerosPP>oP—-X-0
is a projective resolution, then the map Py — X splits. Let
N = ker(Py — X).

The natural map ¢ : P, — N is a cycle of Hom(P, N) and thus
defines an element of ExtL(X, N); since this group vanishes, the
element is a boundary so there exists a map Py — N extending .
This map is a splitting of the inclusion N — Py, and thus coker
Py, — X splits too. This concludes the proof of the equivalence
of conditions a—d. g

As with Tor, we offer the reader some simple exercises to become com-
fortable with Ext.



A3.11 Ext 645

AS3.11.1 FExercises: Ext

Exercise A3.23: If z is a nonzerodivisor in a ring R, compute
Exty (R/z,M). In particular, compute Exty(Z/n,Z/m) for any integers
n, m.

Exercise A3.24: Show that a finitely generated Abelian group A is free iff
Exty(A,Z) = 0. It was conjectured by Whitehead that this would hold for
all groups, but the truth turns out to depend on your set theory (Shelah
[1974]).

Exercise A3.25:* For any ring R and ideal I C R, show from the defini-
tions and Exercise A3.17 that

ExtL(R/I,R/I) = Homg(I/I? R/I) = Hom(Tor(R/I,R/I), R/I).

In a geometric context, supposing that R is the affine coordinate ring
of a variety X and that I is the ideal of a subvariety Y, this module
Hompg(I/I?, R/I) plays the role of the “normal bundle” of Y in X; see
Exercise 16.8 for more information.

Exercise A3.26 (Yoneda’s description of Ext!): The ideas in this and
the next exercise give a useful and appealing interpretation of the elements
of Ext. See, for example, MacLane {1963, Chapter III] for more details.

a. If

o 0-B—-X—-A4-0
o : 0>B-X -5A-50
are short exact sequences, we say that a is Yoneda equivalent to
o if there exists a map f: X — X’ making the diagram
0 ->B —- X — A—-0
| I
0 - B - X - A0

commute. Show that Yoneda equivalence is an equivalence relation
(reflexive, symmetric, and transitive). Show that « is Yoneda equiv-
alent to the “split” sequence

0:0 D A—-A®B—-B—0

iff « is itself split.

We shall write [a] for the Yoneda equivalence class of a short exact
sequence .

We now define E'(A, B) to be the set of equivalence classes of short

exact sequences as above. We shall sce that EL(A, B) is naturally
isomorphic to Extr(A, B).
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b. Functoriality in A: Show that E(A, B) is a contravariant functor of

A as follows: If
a: 0B X -5 A-0

is a short exact sequence and v : A’ — A is a map, define
X' =ker(—a,v): X A" — A,

X' is called the pull-back (or fibered product) of X and A’ over
A. Show that there is a short exact sequence

:0-B->X —-A >0
and a commutative diagram

ad:0 - B - X - A >0
[ l Lv
a: 0 - B —- X —- A > 0.

We define v([a]) to be o/. Show that this makes E}(A, B) into a
contravariant functor of A as claimed.

Functoriality in B: Given a map b : B — X and another map u :
B — B’, the push-out (or fibered coproduct) of X and B’ under
B is by definition coker(—b,u) : B — X @ B’. Dualize the argument
of part b, using the push-out construction, to show that E}(A, B) is
a covariant functor of A.

Prove that EL(A, B) = Extp(A, B) as follows: Let

Q: Qo Q-

be an injective resolution of B, and let b : B — )y be the injection
of B to Qg that is the kernel of 1. An element v of Extyp(A, B) is
represented by a cycle of Hompg(A, @), whichisamapv: A — @,
such that ¢¥_jv = 0; that is, amap v : A - kery_; = Qo/B. Let o
be the short exact sequence

a:0-B—Qy— Q/B—0,
and let v/ € EL(A, B) be the element v([a]). Show that
¢ :Extp(A,B) — ER(A,B);v—e(v) =1/

is a bijection of sets, natural in the sense that if A/ - A or B —
B’ are homomorphisms, then the induced maps on ExtL(A, B) and
E(A, B) correspond. If P : .- — P, — P, is a projective res-
olution of A, show dually that EL(A, B) may be identified with
H_;(Hompg(P, B)). This proves that Exth(A, B) could be computed
from a projective resolution of A as well as from an injective resolu-
tion of B.
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e. The module structure on E : If r € R, the underlying ring, then
multiplication by r is an endomorphism of any module B, and thus
induces a map on EL(A, B) by functoriality in B. Of course, it also
induces a map by functoriality in A. Show that these two maps are
the same; we use them to define the action of R on Ex(A, B). To
define an addition on EL(A, B), let «, o be short exact sequences as
in part a. Let d: A — A ® A be the diagonal map d(a) = (a,a), and
let s : B® B — B be the sum map s(b,d') = b+ V. Let a ®a’ be the
direct sum of a and «/,

a®d:0-BdB-XpX - ApA—0
and set
[a] + [@] = sdla® o] = dsja @ o).
Show that these definitions make EL(A, B) a module and ¢ an iso-
morphism of modules.
f. If
3:0-B -B—->B"-0

is a short exact sequence of modules, define a “connecting homo-
morphism” 6 : Homg(A, B") — ER(A, B’) for b € Homg(A, B") by
6(b) = b[B] € Ex(A, B'). Show that there is an exact sequence

0 — Homg(A, B') - Homp(A, B) — Hompg(A, B")
~ Eh(A, B') — E}(A, B) — E4(A, B"),

and that if we identify E} with Ext}, then é is the usual connecting
homomorphism.

Exercise A3.27 (Ext as an algebra; the Yoneda Ext in general):
a. Higher Exts: Two exact sequences from A to B “of length n”

a: 0A-X1 - Xy - -5 X,-B—-0
a: 00A-X{5X) - X —-B->0

are primitively equivalent if there is a commutative diagram

aO—>A—>X1—>X2—>—>Xn—-+B—>O

| ! l SRR |
o:0 - A-> X - X, - - - X —- B - 0.

This is not an equivalence relation (it is not symmetric), but we may
define Yoneda equivalence to be the equivalence relation it generates.
Define E%(A, B) to be the set of Yoneda equivalence classes of exact
sequences of length n from A to B. Analogously with the case done
in the previous exercise, show that E%(A, B) is naturally isomorphic
to Ext,(A, B) (computed from either an injective resolution of B or
a projective resolution of A).
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b. The Yoneda product: The functoriality of Ext'(A, B) may be thought
of as giving rise to “multiplication” maps

p: Hompg(B,C)®g Exti(A, B) — Exth(A,C);
p: Extyk(B,C)®rHomg(A,B) — Ext}(A,C).

Thinking of Hom as Ext® is the first step in defining an “algebra
structure,” which is a natural pairing called the Yoneda product

p: Extp(B,C) @ Extf(A,B) — Ext}™(A,C)
defined for all m and n. Namely, if

o 0——+A—>X1—>X2->---——>Xm—i—>B—>0

and ’
B:0-B-LY,5Yy— oY, —»C—0

are exact sequences, then we define u([8] ® [a]) to be the class of the
exact sequence

Ba : 0—>A—>X1—>~--—>Xm~—b—'i>Yl—>---—>Yn—>C’—>0.

Prove that this multiplication is well defined on Yoneda equivalence
classes and that it is associative. (The only case that needs work is
where one of the factors is in Ext’ = Hom.)

Note that the Yoneda algebra defined above is graded by the positive
integers and pairs of modules! However, if we fix a module A and take
A = B, we get a more reasonable object, a (noncommutative) algebra
Extr(A, A) := @, Ext}(A, A) that is graded by the positive integers.
Very little is known in general about the properties of this algebra, although
extensive work has been done on the case where R is local and A = k
is its residue class field. The natural commutative algebra structure on
Tor®(k, k) := @, Tor®(k,k) = @, Hom,(Ext}%(k, k), k), described in the
exercises on Tor, makes Extp(k,k) into a cocommutative Hopf algebra.
Good references are Gulliksen-Levin [1969] for the early work and Anick
[1988] for more recent developments. One important point (used in the
exercises of Chapter 17) is that the product on Ext(k, k) may be computed
from an appropriate coalgebra structure of the resolution of k.

Exercise A3.28:* Let R be a ring with augmentation onto a factor ring
R — k. Suppose that
P ... 4% p L p

is a projective resolution of k over R, with Py = R. Suppose that the
complex P* = Hompg(P, R) has the structure of a graded algebra over R
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and that the differential d* of P* is defined by multiplication by some fixed
element z € Py, that is d*(p) = zp. Show that the algebra structure on P*
induces the Yoneda algebra structure on Extg(k, k), in the sense that the
cycles of P* form a subalgebra of P* and the map from the cycles onto
Extgr(k, k) is an algebra homomorphism. Show that if R is a regular local
ring then the hypothesis on d* is satisfied.

Exercise A3.29 (Miyata [1967]):

a.* (Apparently split implies split) Ifa: 0 - A — B — C — 0 is a short
exact sequence of finitely generated modules over a Noetherian ring
and B = A @ C, then « splits. If you find the general case difficult,
try the case where A, B, and C are finite Abelian groups.

b. One could try to classify the R-modules X that are extensions of one
given module B by another, A, by classifying elements of Ext}{(A, B).
One problem with this approach is that one can have two short exact
sequences

a:0-B—-X-5A—-90

and
o :0-B->X -5A-0

with X = X' without a being Yoneda-equivalent to o/. Give an exam-
ple of sequences of finite Abelian groups where this happens. In gen-
eral, it is hard to say even what relationship [o] and [o/] € Extj(A, B)
have. However, part a shows that [a] = 0 iff [¢/] = 0. Extend this by
proving, with notation as above, that if X = X’  then

rad(ann[a]) = rad(ann[a/]).

A3.11.2 Local Cohomology

The third derived functor of great use in commutative algebra is local
cohomology. (The coherent sheaf cohomology of the algebraic geometers
can also be expressed in terms of it, at least for projective varieties, and
local cohomology with I the ideal of a subvariety plays in a certain sense
the role of “relative” cohomology; see Grothendieck [1967].) For any ideal
I of R, let T';(M) = {m € M|IPm = 0 for sufficiently large p}. It is easy to
see that I'; is a left-exact functor, and we define

Hj(M) = R'T(M),

again as the homology of the complex obtained by applying ['; to an injec-
tive resolution of M. We explain something of the properties of this derived
functor in the central case where R is a local ring and I is the maximal
ideal in Appendix 4.



650 Appendix A3. Homological Algebra

Part II: From Mapping Cones to Spectral Sequences

A3.12 The Mapping Cone and Double Complexes

If « : F — G is a map of complexes, then in many contexts we would
like to know about the kernel and cokernel of the map induced by a on
homology. If a were part of a short exact sequence of complexes—that is,
if either all the «; were monomorphisms or all were epimorphisms, then
we could study this problem by looking at the corresponding long exact
sequence in homology. Of more general usefulness is the following simple
way of producing an exact sequence of complexes

0-G—->M-—F[-1]-0
whose connecting homomorphisms are the maps on homology
(673 Hi_lF = }Il(F[—l]) — i—lG

induced by a. Here we make the convention that if F' is a complex with
differential ¢, then F|i] is the complex where F[i]; = F;,; and with dif-
ferential (—1)%p. Of course the change of sign of the differential has no
effect on the homology module (indeed, the complexes with signs changed
or not are isomorphic—the map is -1 in every degree), but turns out to be
convenient.

Definition. If « : F — G is a map of complezes, and we write ¢ and
¥, respectively, for the differentials of F' and G, then the mapping cone
M(a) of o is the complex such that M(«); = Fi_1 © G;, with differential

F[:(—p-i-_>Fi—l

@N@

Gir g ™ Gi

That is, on Giy1 the map is the differential of G, but on F; the map is the
sum of the differential of F' and the given map o of complezes.

Again, the motivation for this construction is topological: If & : X — Y is
a continuous map between topological spaces, then we may form the union
X x TUY. Let M be the space obtained by identifying X x {0} to a point,
and X X {1} to a(X) in Y, as in Figure A3.8. The d-dimensional chains
of M are generated by the d-dimensional chains of Y and in addition for
every (d-1)-chain z of X, a d-dimensional chain that we may describe as

Z:=(zxI)Ua(r)
z % {0} = point,z x {1} =afz) CY"
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@ =alz) —u+v

= a(z) — (0z)”
FIGURE A3.8.

With orientations as in Figure A3.8, we have 9(z) = —(9(z))™ + a(z).

Proposition A3.19. With notation as in the preceding definition, the nat-
ural inclusion makes G into a subcomplez of M (), and M(«a)/G = F[-1],
so that there is a short exact sequence

0—-G—M(a)—> F[-1] -0
of complexes. In the corresponding long exact sequence in homology,
- Hi(G) — HiM(a) — H,(F[-1]) =5 H; 1(G) — - -,

the connecting homomorphism 6 is the map H;(F[-1]) = H;, F — H,_,G
induced on homology by o : F — G.

Proof. The fact that G is a subcomplex of M («) with quotient F'[—1] (that
is, F shifted by 1 in degree) follows at once from the definition. To compute
the effect of the connecting homomorphism, recall that if [z] is the homology
class in H;(F[-1]) of a cycle z of degree 7, then §([2]) is by definition the
homology class of dZ, where Z is a preimage of z in M(a) and d is the
differential of M(«), and we regard dz as an element of the subcomplex
G. But we may take Z to be (2,0) € M(a); = Fi_1 ® G;, and then dz =
(0, a;-1(z)), whence the assertion. O

Applications of the mapping cone to the proof of exactness of the Koszul
complex and the Taylor complex are given in Chapter 17. A natural gen-
eralization of the mapping cone is the total complex of a double complex;
we give the construction here, though we shall not use it seriously until we
develop the language of spectral sequences.

For agreement with what we do later, we make a small change in notation.
Up to this point we have usually dealt with complexes whose differentials
d have degree —1:



652 Appendix A3. Homological Algebra

'—’Fni’le—*"'
In the interest of agreeing with most of the standard treatments of spectral
sequences and double complexes, we shall now switch to complexes with
differential of degree +1, and we shall write them with upper indices

‘_)Fm_)FmH-l_).__

If we take m = —n and identify F,, with F’~", we recover our previous
notation. We shall generally adopt this convention for dealing with upper
and lower indices. It has the advantage of avoiding negative indices. Thus
we shall write an injective resolution of a module M as

0-M—-Q —Q —Q —
and we can write a free resolution M either in the form
o P2 F 1 S S M0
or in the old form
> B —>F—-F—->M-0.

I believe that the price of making such translations is more than repaid by
the convenience, in dealing with spectral sequences, of always having the
arrows point the same way.

Definition. A double complex is a commutative diagram as in
Figure A3.9 (estending infinitely in all four directions) where each row
and each column is an ordinary complex; that is, a commutative diagram

F as shown, with d},, = 0= d2,,.

Of course, any ordinary complex may be considered a double complex in
which only one row is nonzero, and a map of ordinary complexes may be
thought of as a double complex in which only two rows are nonzero. From
the latter example, we have seen how to make an ordinary complex, the
mapping cone. The natural generalization of this construction is a way of
making an ordinary complex, called the associated total complex, from
any double complex.

Definition. The total complex of F' is a complex whose kth term is
Dipji Y,
with differential as in Figure A3.10. Somewhat more directly, one may think

of a term of the total complex as the sum of the terms of the double complex
along a diagonal, as shown by the line through the summands of (tot F)i+7+1
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FIGURE A3.10.

in Figure A3.11. The differential is equal to the sum of all the maps shown,
the maps in the jth row being multiplied by (—1)7.

If F and G are ordinary complexes, with differentials ¢ and ¢, then the
tensor product of F' and G (as graded modules) becomes a double complex
with terms Fj; = F~>77 := F; ® G; and differentials dyor = @ @ 1, dyery =
1 ® v, as in Figure A3.12.

Similarly, Hom(F, G) is a double complex with terms F>~J := Hom(F}, G,)
and differentials dp,, = Hom(yp,1) and dyey = Hom(1,). The homology
of the total complex of Hom(F, G) has a nice interpretation, given in the
following exercises.
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A3.12.1 Ezercises: Mapping Cones and Double Complexes

Exercise A3.30 (Resolution of an ideal from a factor ring): Suppose
that R is a graded ring such that Ry is a field, I C R is an ideal, and J is
an R-module. Suppose that

F....-F,—----—-F->R->R/I->0

and
G: - —=Gs—--—>G -G —»J—-0

are free resolutions of R/I and J. Given a monomorphism a : J — R/I,
identifying J with an ideal in R/I, let J’ be the preimage of a(J) in R.
Given also maps «; : G; — F; forming a map of complexes a : F — G
lifting the map a, show that the mapping cone of «a is a free resolution
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M: ..._)FS®G3_1—-)---—)F].@GO—)R—)R/JI_}O
of R/J'.

If R is local or graded, we would sometimes like to have a minimal free
resolution of R/J’. Unfortunately, M need not be minimal even if F' and G
are, but there is one moderately common case in which we can prove that
M is minimal. Suppose that R = Ry ® R; @ - - - is a graded ring, and write
each F; and G, as a sum of twists of R : F; = &;R(fi;) and G; = &, R(g;;).
Show that if fi; > g for all ¢,7,k, then M is minimal.

Exercise A3.31: If « is an isomorphism of complexes, show that the
complex M(a) is “homotopically trivial” in the sense that the identity
map from M{«a) to itself is homotopic to the zero map.

Exercise A3.32: A quasi-isomorphism of complexes is a map of com-
plexes that induces an isomorphism on homology; two complexes are quasi-
isomorphic if there is a quasi-isomorphism between them (in either direc-
tion). A homotopy equivalence of complexes F and G isamap a: F — G
such that there is a map 8 : G — F with the property that a8 and Ba
are each homotopic to the identity. Show that a homotopy equivalence is a
quasi-isomorphism. Show by example that not every quasi-isomorphism is
a homotopy equivalence. Show by example that two complexes may have
the same homology without being quasi-isomorphic.

Exercise A3.33: Suppose that
0F SF 2o

is a short exact sequence of complexes. Show that F” is quasi-isomorphic
to M(«a) by showing that there is a short exact sequence of complexes

0— M(d)— M(a)— F" -0,

where o is the isomorphism of F’ onto «a(F’) C F, and using Exer-
cise A3.32. Similarly, show that F’ is quasi-isomorphic to M(3) (up to
a shift of degree).

Exercise A3.34: Show that if
F: - sF" 2 ol LF" 5050—---

is a complex “bounded above” and
G: - 50-50-5GCG"-G™ s em? 5.

is a complex “bounded below,” then the cycles of degree 7 in tot(Hom(F, G))
are the degree-¢ maps of complexes from F' to G (that is, collections of
maps F ; = F/ — G/*! that commute with the differentials), and the
boundaries are the maps homotopic to 0; thus H;(tot(Hom(F,G))) is the
group of homotopy classes of maps of degree 7 from F to G. The same thing
is true if F' is bounded below and G is bounded above.
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A3.13 Spectral Sequences

General references for spectral sequences:? Serre [1957] does the case of a fil-
tered complex quite directly (I learned the subject from this source). Other
good treatments may be found in Maclane [1963], Cartan and Eilenberg
[1956], Godement [1958], Grothendieck [1957] and Hilton and Stammbach
[1971]. For a particularly gentle exposition of the subject with topological
intentions, see Bott and Tu [1982] (but watch out for misprints).

Spectral sequences first arose in the work of Leray [1946, 1950] on topol-
ogy and independently in the work of Lyndon [1946, 1948] on group coho-
mology. The topologists are the primary consumers of the theory, but there
are plenty of applications in commutative algebra, in various algebraic coho-
mology theories, and in other areas as well.

It is easy to describe a spectral sequence.

Definition. A spectral sequence is a sequence of modules "E forr > 1,
each with a “differential” d, : "E — "E satisfying d.d, = 0, such that
"H1E ~ kerd,/imd, (or, as we shall prefer to write it, "'E = H("E), the
homology of "E).

From these data one can define a “limit” term *“E. A spectral sequence
may be interesting because “F may be identified with some inherently
interesting object, to which the "E become “successive approximations”;
or, on occasion, because the "E are interesting and * E is somehow trivial,
which shows that some of the maps d, must be very nontrivial.

To define ®F, we first define submodules

0='Bc?Bc.--c'"Bc---Cc---C"Zc.--c?zZcl'zZz='E

such that 'E = Z/'B for each i. To do this, let 'Z = 'E, and 'B = 0, so
that 'E = 1Z/'B. Having defined ‘B and *Z, for i < r we define ""'Z as
the kernel of the composite map

"7 —~"Z/'"B="E -2 "E="Z|"B,

and write the image of this map as "*'B/" B; clearly "*'Z/""'B = H("E) =
r+1E and
"BC *r'+1B C r+lZ C rZ,

as required. Having defined all the Z and ‘B, we set

2Spectral sequences = suites spectrales; and spectral sweets = ghost candy.
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and finally we define the limit of the spectral sequence to be
OF =®Z/®B.

We say that the spectral sequence collapses at "E if "E = *FE, or equiv-
alently if the differentials d,,d,,1,d, s, ... are Q.

Where do interesting spectral sequences come from? Most of the appli-
cations in algebra have to do with a spectral sequence that arises from
a double complex in a way to be described shortly, a construction that
generalizes the theory of the mapping cone that we have already used.
There are also a few applications of the more general notion of the spec-
tral sequence of a filtered complex. Still more general is a construction
introduced by Massey [1952] that derives a spectral sequence from an
object called an exact couple. There is an exact couple associated to
any monomorphism from one complex (or differential module) to another,
and it seems that most useful spectral sequences can be defined this
way.

The subject of spectral sequences is elementary, but the notion of the
spectral sequence of a double complex involves so many objects and indices
that it seems at first repulsive. The approach via exact couples allows a
much simpler view, postponing the indices until they are really needed;
we shall follow this approach. First, however, we introduce the subject by
recasting the theory of the mapping cone in the form it takes as a special
case of the theory of the spectral sequence of a double complex.

A8.18.1 Mapping Cones Revisited

Suppose that a : FF — G is a map of complexes, and that we are interested
in the homology of the mapping cone M := M{a). We shall show that
the long exact sequence in homology of Proposition A3.19 can be inter-
preted as giving a filtration on the homology of M and a (very simple)
spectral sequence whose ®F term is the associated graded module of this
filtration. This is a special case of the situation that holds more generally
for (reasonable) double complexes.

The complex M contains a subcomplex M! isomorphic to G, with quo-
tient M/M! = F[—1]. The resulting long exact sequence in homology has
the form

Q-1

- — HiF =5 HG — HM — H; \F = H; G — ---,
where we have written o; and «;_; for the maps induced on homology.
Saying that there is such an exact sequence is equivalent to saying that

H;M has a filtration, which we shall write as

HM = (H;:M)° > (H;M)' > (H;M)? =0,
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where (H;M)! = im H;G — H;M, such that

(Hz-M)l/(HZ-M)2 = coker a;,

(HzM)O/(HzM)l = kerai_l.
We write HF' = @; H;F', and similarly for G and M. Write a, for the direct
sum of the maps «;, so that a, : HF — HG.

We can now define the spectral sequence: Let ! E be the module H F[—1]®
HG. The module 'E has a “differential” d; that is the composite

'E:HF[-1)|® HG - HF|-1] =% HG — HF|[-1]® HG,
where the left-hand map is projection onto the first factor, and the right-
hand map is injection into the second factor. It is clear that ker d; = ker a.,®
HG, and im d; =0 @ im a,, so
’E := H('E) = ker a,, © coker a,.
We give 2F and all the succeeding " E the differential 0, so that the resulting
spectral sequence collapses at 2E, and 2E = ?E = ... = *E. The above
relations may thus be written as
grHM = H™FE,
where gr HM is the associated graded module of HM, that is,
gr HM := (HM)?/(HM)' © (HM)'/(HM)?.

This is the form that is generalized to arbitrary double complexes and
beyond in the next section.

A3.13.2 FEzxact Couples

An exact couple is an exact triangle® of the form

A ’ A
(*) \ /

3The reader who objects to defining an exact couple to be an exact triangle has
my sympathy. Presumably the fact that there are only two distinct modules in the
triangle, A and F, is the origin of the name.
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—that is, a diagram of modules and maps as above, which is exact in
the obv10us sense that kera = im~, kery = im 3, and ker 3 = ima. Let
d: E — E be the composite map d = 3v. Since v3 = 0, we see that d> = 0,
so F is a differential module, and we write

HE = kerd/imd

for its homology.

Proposition—Definition A3.20. If the diagram (x) above is an ezxact
couple, then there is a derived exact couple

aA—-—P- aA

\ /

where:

o is « restricted to aA, the image of o;
B isBoa!:aA — HE, taking aa to the homology class of Ba;

v is the map induced by v on kerd (which automatically kills im d).

Proof. Note that 3’ is well defined because ker o = im+ is taken to im d
by 3. The proof of exactness is completely straightforward, and we leave it
to the reader. O

Given an exact couple () we may form the derived exact couple (x*), and
then repeat the process on (xx) ... . Thus we get the spectral sequence
of the exact couple, defined by:

1F = FE with differential d; = d = 3, from the original couple;
’FE = HE with differential d; = 34/, from the derived couple;
SE = HHE --- from the derived couple of the derived couple;

and so forth.
It is easy to check that with notation as in the definition of a spectral
sequence we have

T+IZ — ’Y_l(im a'r)
"B = B(kera”),

where o” is the composite of o with itself r times. Thus
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i vl (Oima")

()

Where do interesting exact couples come from? All of those treated here
are instances of the following construction:

Let F' be a differential module over a ring R, and let a : FF — F be a
monomorphism. Set F' = F/aF. The module F inherits a differential from
F', so the short exact sequence of differential modules

0F- S5 F-F=0

gives rise to an exact triangle in homology

HF —Lb HF
X
HF

where we have written o again for the map on homology induced by
a : F — F. The spectral sequence of this exact couple will be called
the spectral sequence of a on F'

It is convenient to think of the map « as induced by multiplication
with an element o« of R that is a nonzerodivisor on F. Every case may
be regarded this way—if necessary we adjoin a new variable o to R, and
let it act as & on F' (and thus also on HF), so that F' and F become
R[a]-modules, with F = F/aF. If R is Z, the ring of integers, and a € Z
is an integer, then the spectral sequence above is widely known as the
Bockstein spectral sequence, and the differentials as the Bockstein oper-
ators, but much of the theory is the same in the general case. With this
in mind, we shall call ker o" : HFF — HF the a"-torsion of HF. We
shall also consider the intermediate complexes F'/a” F'; we say that a class
in HF can be lifted modulo o if it is in the image of the natural map
H(F/a"F) — HF; that is, if it has a representative in F' (not necessarily
a cycle) that becomes a cycle modulo a'.

Proposition A3.21. In the spectral sequence of a on F, the module "1 Z
is the set of classes in HE that can be lifted modulo o’ *!, while "B
is the image in HE of the o -torsion in HF. If Z is a cycle in F with
a representative z € F that is a cycle modulo o, then the differential
dry1 : "HUE — ™1E takes the class Z to the class of o~ "tVdz, where d is
the differential of F.
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Proof. If z is any lifting to F  of a cycle z in HF', then v[z] = [a dz] € HF.
Further if z € F' represents a cycle in F//a"F, then dz is divisible by a”, so
o~ "dz € F makes sense; it is a cycle because a is a monomorphism on F.
The rest is immediate from the definitions. O

A3.13.8 Filtered Differential Modules and Complezes

A filtered differential module is a differential module (G, d) together
with a sequence of submodules G? satisfying

G>---DG OG>, peZ

that are preserved by d —that is, dG? C GP for all p. If in addition G is
graded (for example, G might be a complex), say by upper degrees G =
©,GY, then we write (G9)? for the pth level in the filtration of G?. There
are two examples that the reader should bear in mind. Recall that we write

G, for G749
Example A. Let
G: -5 G1 25G6, 256, - -

be a complex of finitely generated modules over a Noetherian local ring
(R,m), and let

GP=m’G: - -G, @»m”Gq 2, WG, — -
For the interesting applications we shall need more general filtrations

GP i GP

q+1 s Gy — Gg‘l -
satisfying only the property that --- > G? D G#*! > ... is an m-stable
filtration in the sense of Chapter 5 and Exercise A3.42.

We regard G as a filtered differential module by taking the direct sum
over all ¢, as usual.

Example B. Let F' be a double complex as in Figure A3.9 and let G
be the total complex, G = tot F. There are two natural filtrations on
G—uvertical filtration and horizontal filtration. The horizontal filtration is
defined by subcomplexes ,,G?, where p,,G? comes from the rows of F
where the second index > p; that is 1,,,G? is made from the rows from F*?
up, shaded in Figure A3.13.

Similarly, vertG? is the subcomplex coming from the columns where the
first index is > p; in the picture, these are the columns FP* and to the
right. More formally, we let
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(hoer)lC = Ditj=k, jzpFi’j

with differential defined as the restriction of the differential of GG, and sim-
ilarly for ,e+GP.

In this section we shall give a general procedure for making a spectral
sequence from a filtered differential module and we shall consider Exam-
ple A. In the next section we shall consider Example B. In each of these
cases we simply interpret Proposition A3.21; it is a new interpretation of
the limit term that makes these situations interesting.

Let G be a filtered differential module as above, and let F = @©pezGP.
The sum of the inclusion maps GP*! — GP defines a map o : F — F that
is obviously a monomorphism. Its cokernel F' is obviously

grG = 9,G?/GPH.

Thus, setting ' EP = H(GP/GP*1), we see that the spectral sequence of o
on F starts with

'E = H(grG) = ©,H(G?/G"") = @, EP.

Since F/a"F = @,G? /GP*", we may interpret Proposition A3.21 as saying
in this case that "*1Z = @,""1 ZP, with
r+17P — {[2] € 'EP|z € G and dz € GP*"1}
= {z € GP|dz € GPTH!} + GPT /GPH! 4 dGP;
THBP = {[2] € 'EP|2 € G* and z = dy for some y € GP"}
= (GPNdGP™") + GP*' /GPM + dGP.
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So far, this is nothing but an application of Proposition A3.21. The new
element is the following relation of * F with HG. The module HG is filtered
by the submodules (HG)? = im H(GP) — HG. The associated graded
module may be written as gr HG = ©,(HG)?/(HG)P*!, and writing K? =
{z € GP|dz = 0}, we have

(HGY/(HG)**! = KP/(KP*! 4 (dG N GP))
= K? + G*"'/(GP N dG) + GP*!

because K? N ((GP NdG) + GP*1) = KP* + (dG N GP).
This last expression for {HG)?P /(HG)P*! is quite similar to the expression

*zP /B = ({z € G*ldz € G} + ")/ J(GP NdGP™) + GP*).

r

Writing the quotient on the right as M?P/N? we have

MP > K?P + GPHY
N? C (G NdG) + GPHY4

so taking the direct sum over all p, we get

gr HG is a quotient of a submodule of *Z/*B.

Definition. We say that the spectral sequence of the filtered differential
module G converges, and for any term "E of the spectral sequence we
write "E = gr HG, if gr HG = *Z/*B; that is, if for each p we have

i. N.({z € GPldz € GP'"} + GP*!) = {z € GP|dz = 0} + GP*!, and
i, U, ((GP N dGP=") + GP*1) = (GP N dG) + GP*.

Note that condition # is relatively trivial; it will be satisfied as soon as
G = U,GP. Condition i, however, is much more subtle.

Theorem A3.22. The spectral sequence in Example A converges; further,
the filtration induced on the homology of G is m-stable.

Proof. We prove convergence for the m-adic filtration, leaving the important
generalization to the reader in Exercise A3.42. In this spectral sequence,
GP = G for p < 0; thus convergence condition ii is trivially satisfied.

We now turn to condition i, which we may rewrite in the form

() ({z € GPldz € GP*"} + GP*) /{z € G?|dz = 0}

r

= ({z € GP|dz = 0} + GP™1)/{z € GP|dz = 0}.
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The proof uses the Artin-Rees lemma (Lemma 5.1) and the Krull intersec-
tion theorem (Corollary 5.4).

Note that each G? is a direct sum of the finitely generated modules
(Gy)P = mPG,, and the result we want may be checked for one of these
summands at a time.

First, set X = (Gy)?/{z € (G4)?|dz = 0}. The differential d induces an
inclusion X C (G,-1)?, and for sufficiently large 7/,

{2 € (G, |dz € (Gy )" *"} /{2 € GPldz = 0)
C X N(Gyp)P*"
=XN m’(Gq_l)P.
By the Artin-Rees lemma, there is a number s such that this is contained
in m"*X for all r > s, so that

{z € (Gy)Pldz € (G )P} € m™*(G,)P + {z € (G,)?|dz = 0}
Thus
{z € (Go)Pldz € (Gg1 )"} + (G)P* /{z € (G,)Pldz = 0}
Cm (G + {2 € (Gg)|dz = 0} + (G)P*' /{2 € (Gy)|dz = 0},
and the intersection of these for all r is
{z € GPldz = 0} + G /{z € G®|dz = 0}

by the Krull intersection theorem. We leave the m-stability of the induced
filtration on HG to the reader (see Exercise A3.42).
The following corollary contains two simple applications.

Corollary A3.23.

a. Let z1,...,z, be a sequence of elements in the maximal ideal m of a
local ring (R, m), and write x} for the leading form of xz; in gr, R. If
the x} form a regular sequence on gr, R, then the x; form a regular
sequence on R.

b. Let M and N be finitely generated modules over a local ring (R, m).
There is a spectral sequence

Tors R (gr M, gr N) = Torf(M, N).
Thus, for example, if Tor& ®(gr M, gr N) = 0 then Tor’(M,N) = 0.

Proof. Follow the hints in Exercises A3.43 and A3.44. O

We emphasize that the filtration induced on Tor®(M, N) in this corollary
may not be the m-adic filtration, but will be m-stable.
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A8.18.4 The Spectral Sequence of a Double Complex

We now take up Example B, which is arguably the most important for
algebraists. For this discussion we keep the example’s notation, summarized
in Figure A3.9, with G = tot F.

We consider HG and H(G/aG) as bigraded modules by setting

(HGYP9 .= HP*9(GP) and H(G/aG)P? := HPYI(GP/GPHY).

The maps «, 3, and  in the exact triangle

HG—=—p» HG

\/

H (G /aG)

are then bigraded of degrees (—1,1), (0,0), and (1,0), respectively. Thus
the differential d, : "E — "E is bihomogeneous of degree r in the p grading
and —(r — 1) in the ¢ grading; that is, d, is the direct sum of maps

dr . rEp,q N rEp+r,q7r+1_

More graphically, representing ! E as an array of the ' EP4,

1 ppa 1 pp+lg 1 pp+2,4
lppg-1  1pp+lg-1 1 ppi+2,4-1
1 pp.q—2 1 pp+1,g-2 1 pp+2,q-2

the differential d, goes “r steps to the right and r — 1 steps down” as in
Figure A3.14.

Of course, this picture needs some interpretation: dy is actually defined
on the kernel of d; (a quotient of which is 2E**); dj3 is actually defined on
the kernel of do; and so on. To describe the d;, suppose for definiteness that
we are working with the spectral sequence of the horizontal filtration. Then
d is simply the map induced by dper on the homology of dyerx. An element
of the kernel of d; is represented by a “vertical cycle” z € FP49 (that is,
an element of the kernel of d) that is mapped by dp, to 0 in homology
—that is, such that dyo(2) is a “vertical boundary,” an element of the form
dyert(2). The map dy takes (the homology class of) z to the homology class
of dpo:(2'). For this to be zero means that dho(2') = dvert(2”) for some 2",
and in this case d3 carries (the homology class of) z to di,(2"); and so
on.

Here is our main result.
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FIGURE A3.14.

Yy

FIGURE A3.15.
Theorem A3.24. Associated with the double complex F are two spectral

sequences, . FE and . [FE, corresponding, respectively, to the horizontal
and vertical filtrations of tot(F) = G. The 'E terms are bigraded with the
components given by

ho%Ep‘q = HQ(F*,p)’ vertlEp’q = HQ(FP,*)_

If F*1 = 0 for all i < O or for all j > 0, then the horizontal spectral
sequence converges; that is,

hg?E = &Thor H(tot F).

Symmetrically, if F* = 0 for all i > 0 or for all j < 0, then the vertical
spectral sequence converges.

Terminology: Theorem A3.24 implies that both spectral sequences con-
verge either if F*9 = 0 for all i < 0 and for all § < 0 or if FiJ = 0 for
all i > 0 and for all 7 > 0. In the former case, the nonzero terms are
all in the first quadrant of the ¢, j-plane, and we call F' a first-quadrant
double complex. In the second case the nonzero terms are all in the
third quadrant, and we call F' a third-quadrant double complex (see
Figure A3.15).
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Proof. The proof of the first formula is immediate from the definitions. For
example, we have

horIEp,q = Hp+q(grhor(t0t F)p)
= HU(F"),

whence the formula for , | EP7; the case of the vertical spectral sequence is
similar.

The proof of convergence uses the bigrading. Writing G for the total
complex tot F', we must show that

i. N({z € G"|dz € GP*"} + GP*Y) = {2 € GP|dz = 0} + GP*!

and
ii. U.((GPNdGP™™) + GPtl) = (GPNdG) + Grtl,

Since G' = U,G? with respect to either filtration, condition ii is trivially
satisfied (this does not use any conditions on the double complex). Condi-
tion i means that if z € GP and for each r there is an element y, € GP*!
such that d(z — y,) = 0mod GP*", then there is some y € GP*! such that
d(z —y) = 0. In our case, since GG is a complex, it is enough to check this
for z € (G)?, for some ¢. For definiteness, consider again the case of the
horizontal filtration. The element d(z — y,) is then in

(Gq+1 P = @ Fid

i+j=q+1,j>p+r

If Fi9 = 0 for j > 0, then (G*)P*" = 0 for r > —p. If, on the other hand,
F =0 for i < 0, then (G"!)P*" =0 if r > ¢ + 1 — p. Thus in either case
d(z — y,) = 0 for suitable r, and we may take y = y, for this value of r.

A refinement of the notation for convergence is useful: We write
"EPY =, HP"(tot F')

to mean that the spectral sequence containing the terms "EP? converges,
and that writing HP*4(tot F')P for the pth level in the associated filtration
of HP+4(tot F),

©EPY — HP49(tot F)P /HP (tot F)P*1,

We now give two simple applications. More will be found in the exer-
cises. The first involves a double complex both of whose spectral sequences
degenerate at ?E.

i. Balanced Tor. We shall show that Tor!'(M, N) may be computed from
a free resolution of either M or N and is in fact a “balanced” functor in the
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sense that if a € R, then multiplication by a on M induces the same map
on Torf(M, N) as does multiplication by a on N—that is, the R-module
structure on Tor!(M, N) may be induced from the module structure of
either M or N. To see this let

i
P:...-—)Pi_). 1_1_9.._)P0

and
Q: ""*QiﬂQi—l'—’"'_*QO

be free resolutions of M and N, respectively. We shall show that
H(P &g N) = H(tot(P @z Q) = H(M &z Q),

as R-modules. Since “Tor(M, N) computed from a free resolution of M”
is the first of these, and “Torf(M, N) computed from a free resolution of
N” is the last, this will suffice.

Let vert £ be the vertical spectral sequence associated with the third-
quadrant double complex F' = P ®p @, which may be written with
upper indices, using the convention that P* = P_;, in the form shown in
Figure A3.16. We have . Ei; = .ot E%7 = H;(P; ® Q). Since P is free,
the complex P; ® @ is just a direct sum of copies of Q; more invariantly, we
have H;(P,®Q) = P,®H,;(Q). Thisis 0 for j > 0, while L®H,(Q) = P,QN.
Thus the only nonzero ., !FE;; are those with j = 0. The differential d; is

vert

induced by dnor = ¢ ® 1. Thus ' E is the complex P ® N, and

vert

2 . .
Eij= 0 forj>0.

vert

_{mw®N)mu=0
J
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o —

) vert

It follows that the spectral sequence degenerates at 2E; that is
2F. Since all the nonzero terms have j = 0,

vert
o0 __ 00
@ vert Ei,j - Ek,O,
’L+]=k

and the filtration of H (tot(P®(Q))) has only one nonzero piece. Thus we get
H(P® N) = H(tot(P ® Q)). By symmetry, H(tot(P ® Q)) = H(M ® Q)
as well; we could also deduce this from the horizontal spectral sequence of
P®Q.

ii. Change of Rings. Let R — S be a ring homomorphism, let A be an
S-module, and let B be an R-module. We shall derive one of the “change of
rings spectral sequences” (see Exercise A3.45 for others), whose 2E%/ term
is Ext%(A, Extfé(S’, B)), converging to Exti{{j(A, B); that is,

Extk(A, Ext(S, B)) =; Ext%7 (A, B).
Let
P:. - -—-P—>P_ 14— --—F

be an S-free resolution of A as an S-module, and let
RQ:Q°— ... - Q - ...

be an R-injective resolution of B as an R-module, respectively. We regard
Homg(P,Hompg(S,Q)) as a first-quadrant double complex, with Homg (P,
Hompg(S,@7)) as the i,j term. We first claim that the horizontal spectral
sequence degenerates, as in Example i. We have

'E7% = H'(Homg(P,, Hompg(S, Q%)).

hor
Since @’ is R-injective, Homp(S, Q’) is S-injective, and
H'(Homg(P,, Hompg(S, Q7)) = Homs(H,(P,), Homg(S, Q%)).

Since P, is a resolution of A, this vanishes except for ¢ = 0, and when i = 0
it is Homg (A, Hompg(S, Q7)) = Homg(A4, Q?). Since the , | E differential is
induced from the differential in @), we see that

2pii _ | H/(Homp(4,Q.)) = Ext}(4,B) fori=0
hor 0 fori>0.

Thus, as in the last example, the spectral sequence degenerates at the ’E
term, so H’(tot(Homg(P, Hompg(S, Q))) = Ext}(A, B).
However, the vertical spectral sequence does not degenerate in this case!

We have
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vertlEi!j = Hj(HomS(Pia HOmR(S, Q*))a
and since P; is free over 9, this may be written as

Homg (P, H (Hompg($, Q*))) = Hom(P;, Ext’,(S, B)).

The . E differential is the map induced by the differential of P, and thus

vert

the 2E term has the form
vl EY = Exth (A, Ext (S, B)).

The 2?E differential d; maps this term to Ext?z(A,Ext;;l(S,B))

=2 E7%71 Since yor E has the same limit as vt £, we get

’E = Extg(A,Extg(S, B)) = Extr(A, B)

vert
as required.

The change of rings spectral sequence is a special case of the spectral
sequence of a composite functor; we have only used the fact that
Homp(A, B) is the composite of the functor Homg(A4, —) with the functor
Hompg(S, —) and the fact that the functor Hompg(S, —) takes injectives to
injectives. The general construction plays an important role in algebraic
geometry, beginning with the Leray spectral sequence. See Exercise A3.50
below.

A8.13.5 Exact Sequence of Terms of Low Degree

In general, the relation between the "E term and the *E term of a spectral
sequence is somewhat tenuous, but there is often a simple relation between
the Hi(tot F) and some of the 2EP4. For the sake of definiteness we treat
the vertical spectral sequence of a third-quadrant double complex F' only.
Of course, similar remarks will hold for the horizontal spectral sequence,
and also for a first-quadrant double complex; they may be extended to
other "E as well (see Exercise A3.48).

Proposition A3.25 (5-term exact sequence). If F*/ is a third-quadrant
double complez, then writing H; for H* (tot F'), and E for v E, we have

a. H() & 2E0’0.
b. For every i there is a pair of natural maps
2RO~ L, g EL 20
c. There is a 5-term exact sequence
H, - p-29 N 2p0,-1 _t H, KL2p-10 0,

where dy is the differential of the spectral sequence.
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Proof. We use the fact that F converges to H(tot F'), together with the fact
that 2EP9 = 0 for p > 0 and for ¢ > 0. For example, to prove part c, look
at Figure A3.17 where we have shown some of the 2E differentials.

0 0 0
0 \(L 0
\m\ 26-10 2500 0 0
—
\

FIGURE A3.17.

Because the terms outside the third quadrant are 0, we see that
QE—l,O — ooE—l,O — Hl/(Hl)(),

while
cokerdy = 3EY™1 = ©* g0~ = (H1)0

and
kerdy = E720 = *E™0 = Hy/(Hy) .

Putting these facts together, we get the five-term sequence. The other parts
are similar, but even easier. O

A3.18.6 Ezxercises on Spectral Sequences

Exercise A3.35: Check the exactness of the derived couple in Proposi-
tion A3.20. Check the formulas for "+'Z and "™ B.

Exercise A3.36: Let (F,d) be any differential module, and filter F' by
F:=F > F!:=kerd D F?:=imd > F? :=0.

Writing ("E, d,) for the associated spectral sequence, show that 3E = *E =
HF.

Exercise A3.37: Let p € Z be an integer. Explicitly construct the Bock-
stein spectral sequence associated with the complex
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F0-22%%7 0

with respect to the endomorphism that is multiplication by p; that is,
compute all the "F and d,, and compute *E.

Exercise A3.38:

a. Show that for the spectral sequence of the exact couple

A———>A

XA

there are short exact sequences
0— A/(ima +kera”) - "E — (kera) N (ima”) — 0,

by showing that the left- and right-hand terms are the images of the
appropriate maps in the rth derived exact couple.

Show that if ker o *! = ker o for some r, then the spectral sequence
collapses at "E and "E = *E = A/(ima + kera").

. Show that if A is a finitely generated module and the ground ring is

Noetherian, then for some r the condition of part b is satisfied. Give
a version that holds for the spectral sequence of a monomorphism
a: F — F of a (not necessarily finite) complex F of finitely generated
modules over a Noetherian ring.

. If F is a finite complex of finitely generated, torsion-free Abelian

groups and p is an integer, then show that the Bockstein spectral
sequence for p on F' (that is, the spectral sequence for the endomor-
phism of F' that is multiplication by p) has limit HF/(T + pHF),
where T is the p-torsion submodule of HF (the set of elements killed
by some power of p). For what r is "F equal to *E?

Generalize the argument in the case where F is an infinite complex of
finitely generated, torsion-free Abelian groups; again, show that the
Bockstein spectral sequence for p has limit HF/(T + pHF).

Exercise A3.39: Generalize the construction of the spectral sequence of
an exact couple to the following: Suppose we are given an exact triangle
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A—>p» B
X s
E

together with an epimorphism s : A — B. Define a differential d: £ — E
by d = 3s7. Show that there is a “derived triangle”

s-lo A L’ oA
X v
HE

where 3'(aa) is the class of 8sa, and o/~ are induced from «,~; there is
also a natural “derived epimorphism” s : s7'@A — aA. Thus the process
may be repeated, and we get a spectral sequence.

Exercise A3.40: Let R be the local ring k[, y](,,). Work out all the terms
and differentials of the spectral sequence

Tor=¥(k[z, y)/=*, k[z, y/2y) = Tor™(R/z’, R/zy + y°)
of Corollary A3.23b.

Exercise A3.41 (Comparison Theorem): Suppose that ... D FP D ...
and G--- D GP D .. are filtered complexes, and that o : FF — G is a
morphism of filtered complexes—that is, a morphism of complexes carrying
F? into GP. Writing " E(F) and " E(G) for the associated spectral sequences,
show that there are induced maps " E(F') —" E(G) for every r. Show that if
one of these maps is an isomorphism, and the spectral sequence converges,
then a induces an isomorphism on homology, H(F') = H(G).

Exercise A3.42: Let R be a ring, and let m be any ideal of R. Recall from
Chapter 5 that a filtration

DG OGP D

of an R-module G is called m-stable if
i. mGP C GP*! for all p; and

ii. mGP = GP*! for all sufficiently large p.
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In Chapter 5 it is shown that if condition i is satisfied then grG is
naturally a module over the ring gr, R, and that if G is a finitely generated
module and both conditions are satisfied, then gr G is a finitely generated
(gr, R)-module. Show conversely that if condition i is satisfied and gr G is
a finitely generated (gr, R)-module, then ii holds.

Assume that (R, m) is a local Noetherian ring, and that G is a finitely
generated module with m-stable filtration

GHO>---D2GPoGPlo... .

a. If the associated graded module gr G = &@G?/GP*! is zero, then G is
ZEr0.

b. If F'is any submodule of G, then the filtration of F' by F? := FNG?
is m-stable. Similarly, the filtration of G/F by (G/F)? := (FP+Q)/G
is m-stable.

c. Suppose that (R, m) is a local Noetherian ring. If
G: oGy Gy — -

is a filtered complex of finitely generated R-modules such that the
filtration on each G, is m-stable, show that the induced filtration on
the homology H,G is also m-stable. Prove that the spectral sequence
of the filtered complex G converges to HG, that is, H(grG) = HG.

Exercise A3.43: Prove assertion a of Corollary A3.23 by giving an m-
stable filtration of the Koszul complex K(z1,...,z,) as follows: Let §; be
the degree of the leading form z} of z;, that is, §; is the largest integer
6 such that x; € m®. In the Koszul complex, the ith free module may be
written as A*R". This module has a basic consisting of elements of the form
ej, \+--Ae;, where e; is the basis vector of A'R” = R” that maps to z; in
R. We filter A'R" by submodules

(N'R')? = ®(Rej, A+~ Aej, )P,

where (Rej, A -+ Aej,)P = mP 2% (Re; A--- Aej;); here m* is interpreted
as R for kK <0.

Show that the filtration --- D (A'R™)? O (A'RTPH 5 ... of A'R" is
m-stable, and that with this filtration

gr K(zy,...,2,) = K(z,...,2)),

the Koszul complex of the leading forms of the z;, over the ring gr,, R. Now
deduce assertion a of the corollary from the convergence of the associated
spectral sequence

H(K(zi,...,z})) = gr H(K(z1,...,2)).

Exercise A3.44: Prove the assertion of part b of Corollary A3.23 as fol-
lows.
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a.* First find a free resolution G of M and an m-stable filtration -.- D
GP O GP*! o ... of it such that the associated graded complex is a
free resolution of gr,, M over gr,, R.

b. Define a filtration on the complex G ® N by taking
(G® N)?» =image in GQ N of GP® N.

Show that with respect to this filtration, gr(G ® N) = grG ® gr N.
Now consider the spectral sequence of the filtered complex G ® N.

Exercise A3.45 (More Change-of-Rings Spectral Sequences): Sup-
pose that R — S is a homomorphism of rings, and A is an S-module, B
an R-module.

a. Show that there is a spectral sequence whose 2E term is Ext S(TorR(S ,
B), A), and that converges to Extg(B, A).

b. Similarly, show that there is a spectral sequence

Tor$ (Tor} (S, B), A) =, Tory, (B, A).

Exercise A3.46 (The Two-Row and Two-Column Cases):

a. Let F be a double complex whose vertical spectral sequence E =¢y E
converges to H := H(tot F'). Suppose that for some r only two
columns of "F are nonzero—that is, suppose that the "EP? are
nonzero for only two distinct values of p, say p = s and p = ¢, with
s > t. Show that there is a long exact sequence

RN rEs,i-s N Hz N rEt,ivt _6) T'Es,i—s+l N H’i+1 e
where § =d, ;ifr<s—t,and 6 =0ifr >s—t.

b. A similar result holds if the "EP9 are nonzero for only two values of
q- Apply this to the change-of-rings spectral sequence in the text: For
example, assume that Ext}(S,B) = 0 unless j = sor j =s+ 1, and
derive the isomorphism

Ext%(A, B) 2 Homg(A, Ext%(S, B))
and the long exact sequence

0 — Exti(A4,Exty(S, B)) — Ext$ (A, B) — Homg(A, Ext3(S, B)) —
Ext%(A, Ext$(S, B)) — Ext$ (A, B) — Ext% (A4, Ext$ (8, B))
— Ext%™ (A, Ext}(S,B)) — -+ .
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¢.* Suppose that R is a regular ring of dimension d (for example, a
polynomial ring in d variables over a field) and S = R/I[ is a two-
dimensional domain (for example the homogeneous coordinate ring
of an irreducible projective curve). Let B = R, and let A be any
S-module. Show that part b above applies, with s = d — 2.

Exercise A3.47: Suppose that R — S — k are maps of rings. Using the
change-of-rings spectral sequence of Exercise A3.45b, show that there is a
five-term exact sequence

Tori(k, k) — Torj (k, k) — TorR(S, k) — Torf(k, k) — Tor} (k, k) — 0.

This sequence is particularly interesting when R is a local ring, S'is a factor
ring of R, and k is the residue field of R and S. Interpret the sequence in
this case in terms of minimal free resolutions. See, for example, Gulliksen
and Levin [1969] for information on the resolution of the residue class field
of a local ring.

Exercise A3.48: Find explicit analogucs and gencralizations for Propo-
sition A3.25 for all "E, for horizontal spectral sequences, and for the case
where F* =0 for i < 0 and j < 0.

Exercise A3.49 Resolutions of complexes:* If

F:0-F' > FlSF? ...

is a complex of modules, show that there is a double complex I’* and
maps

0 — 102 — 11,2 N 122 —
7 T T

0 - 01 5 b, 21
T T 1

0 — 190 , to _, 20
T T T

such that
i. Each column [70 — 7! — [52 _, ... is an injective resolution of F}.

ii. In the rows, the kernel of each I%¥ — [7+1* ig an injective summand
of I’* and thus the image of I’ — I’*1* and the homology of
[~Yk — ik [i+4k which is | L EY*, are injective modules.
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The spectral sequence 1 E degenerates at 2E to H(F); that is, the
term holE of the spectral sequence, with differential d; induced by
the vertical maps in the diagram above, forms injective resolutions

0— HJ(F) - hOll‘Ej’O - horll;j,1 - hoiEj,Z -
of the homology of F'.

Such a double complex is called an injective resolution of the com-
plex F.

Exercise A3.50 (Grothendieck’s spectral sequence of a composite
functor): Suppose that A and B are categories of modules over some
rings and that F : A — B and § : B — C are left-exact functors. What
is the relation between the derived functors R'F, R‘G, and R*(GF)? Under
favorable circumstances, it is given by a spectral sequence. Prove this as
follows:

a.

We say that an object B of B is G-acyclic if R'G(B) = 0 for all i > 0.
Show that if B is any object of Band 0 - B — B’ — B! — ... is
an exact sequence of objects of B with each B* G-acyclic, then

R'S(B) = H'(0 — GB" — B! - GB? — ...).

Now suppose that A has a resolution by F-acyclic objects that are car-
ried by F to G-acyclic objects. Show that there is a spectral sequence
2EPY = RPF(RIG(A)) =, RPH(FG)(A).

Show that the change-of-rings spectral sequence given in the text is

of this form, where the composite functor is
Homg (A, Hompg(S, —)) = Hompg(A, —).
If you know enough about sheaves, derive the Leray spectral sequence

H(Rim,(A)) = H(A) for a sheaf of Abelian groups A on a topo-
logical space X and a continuous map of spaces m: X — Y.

A3.14 Derived Categories

... le manque de fondements adéquats d’Algebre Homologique
m’avait empéché. .. . Cette lacune de fondements est sur le point
d’étre comblée par la these de Verdier. .

[. .. the lack of an adequate foundation for homological algebra
hindered me. .. . This gap in the foundations has just been filled
by the thesis of Verdier... .|

—Alexandre Grothendieck, 1963
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We have given a somewhat primitive view of derived functors simply as
things constructed from projective or injective resolutions. Various more
axiomatic definitions have been used, but the most complete and powerful
seems to be Verdier’s formulation by means of his notion of the derived
category [1977]. We give a very brief sketch of the derived category and
the picture of derived functors to which it leads, in the hope that this will
help orient the reader. More complete pictures may be found in Hartshorne
[1966b, Chapter I] Iversen [1986], Grivel [1987], or Lipman [1995].

As we have seen, the central idea in homological algebra is to replace a
module by a projective resolution or an injective resolution: for simplicity
we shall stick with projective resolutions for this description, and leave
the dualization to the reader. There are two desiderata addressed by the
construction of the derived category: First, one would like the association of
a module to one of its projective resolutions to be a functor of some kind.
Second, one would like to be able to replace a module, or a complex of
modules, with a complex of projective modules having the same homology,
as in some ways these are easier to manipulate. This leads to a construction
in two steps, which we now explain. We shall ignore some set-theoretic
points (coming for example from the fact that the “set of all modules” is
not a set) that would form a part of a careful treatment.

A3.14.1 Step One: The Homotopy Category of Complezes

The association of a module to its projective resolution is not a functor,
because projective resolutions are not unique, and neither are the maps
induced on projective resolutions by maps of modules. The first of these
problems is easy to cure: We simply choose a fixed projective resolution
P(M) for each module M (other, more canonical solutions would be to
make a “canonical projective resolution”, with each module free on the
elements of the kernel of the map before; or to take some direct limit
over all projective resolutions). Unfortunately, the nonuniqueness of maps
induced on projective resolutions keeps P from being a functor. However,
we have already seen that every map of modules lifts to a map of projective
resolutions that is unique up to homotopy. Thus P becomes a functor from
the category M of R-modules to the category K(M) whose objects are
complexes of R-modules and whose morphisms are the homotopy classes
of maps between complexes.

Because we would like to have projective resolutions for any object in our
category, and because it is not so clear how to make projective resolutions
for unbounded complexes, we restrict ourselves at this point to the category
K+ (M) of “bounded-below complexes,” that is complexes

F.__) l+1_)Fl_)'

with F; = 0 for i <« 0. See Exercise A3.53 for the meaning of projective
resolutions in this setting. (Recent developments suggest that there are
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good resolutions for unbounded complexes too—see Avramov and Halperin
[1986]. In any case, a more thorough treatment of derived categories would
contain parallel constructions with bounded-below complexes, unbounded
complexes, and bounded-above complexes, the last for the purpose of using
injective resolutions and constructing right derived functors. We shall sys-
tematically ignore all but the first of these.) Because homotopic maps
induce the same map on homology, one still can speak of the “nth homology
module” H;(X) of an object X of K(M), even though one cannot speak of
the “term of degree n” in X.

Now the category K*(M) is no longer an Abelian category. For example,
if F and G are the complexes of Abelian groups

F: - . 0-0-2Z—-0—-0—>--,
G: ---0—»0-—-»Z/(2)——>0-—-;O—>---

bl

and 7w : F — G is the natural map of complexes mapping Z onto Z/(2),
then no image for 7 exists in K+(M); see Exercise A3.51.

Because K (M) is not Abelian, we cannot speak of exact sequences in
this category. However, the category K™ (M) has a new structure, called
a triangulation, which can be used as a substitute for exact sequences.
First, we have a “translation functor” T on complexes that takes a complex
F to the complex F|[—1]. Given a translation functor T on a category, a
triangulation is a distinguished collection of diagrams of the form

A—-B—-C—-TA,

satisfying certain axioms, which we shall not state. In the case of the cate-
gory K+ (M), we may take the triangles to be the diagrams made from the
mapping cones of maps a : A — B of complexes, that is the diagrams of
the form

A% B2 M) 2 TA,

where for simplicity we have written « for the homotopy class of a, and 3
and  are the homotopy classes of the standard inclusion of B in M (a) and
the projection of M («a) to A[—1] = T A, respectively. If we apply the homol-
ogy functor to such a triangle, we get a long exact sequence in homology,
as explained in the section on mapping cones.

The reason for making this choice instead of taking the triangles to be (or
at least include) the short exact sequences of complexes is that, with the
definition above, any additive functor on the category of modules induces,
in an obvious way, a functor on K+(M) that preserves triangles.

AS8.14.2 Step Two: The Derived Category

Following our outline, we wish to be able to replace any complex by a pro-
jective complex with the same homology. The construction of projective
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resolutions of complexes, Exercise A3.53, shows that given any bounded-
below complex F' there is a bounded-below complex F’ of projective mod-
ules and a map F' — F of complexes that induces an isomorphism on
homology. Thus we may attain our goal by formally inverting every mor-
phism that is an isomorphism on homology—such a morphism is called a
quasi-isomorphism, or quism.

Now, quite generally, given a category A and a set 8§ of morphisms, there
is a universal solution to the problem of finding a category B and a functor
A — B taking all the elements of § to isomorphisms; the resulting category
B is unique up to equivalence of categories and is called A[8~!]. The objects
of A[87!] may be taken to be the same as the objects of A, and the mor-
phisms are “words” whose letters are morphisms of A and formal inverses
57! of morphisms s € 8§, subject to the condition of composability and the
equivalence relation generated by composition in A and the rule that s~! is
inverse to s. (The construction is directly analogous to localization of rings,
which is actually the special case where A is an additive category having
just one object X—the ring in question is Hom(X, X).) However, these
localized categories are in general quite awkward. For example, there may
be no simple criterion to tell whether two morphisms from A become equal
in B. (The same phenomenon occurs in the special case of localizations of
general noncommutative rings. In logical terms, the “word problem” may
be recursively insoluble.)

In the case of the category K (M) we are lucky (the recognition of this
luck seems to have been one of Verdier’s fundamental insights): The local-
ization of K+ (M) with respect to the set of quasi-isormorphisms has a nice
form. The fundamental point is that the maps in the localized category can
all be represented in the form o~ 'a, where a is a morphism of K*(M) and
o is a quasi-isomorphism, so that we have a sort of “calculus of fractions.”
The crucial point that must be checked is that we can rewrite any compo-
sition b3~! with 3 a quism in the form o 'a, with o a quism. Rewriting
this without using inverses, one must check that given a mapa : B — C
and a quasi-isomorphism « : B — A, there exists, for some complex B’, a
quasi-isomorphism 38 : C — B’ and a map b : A — B’ such that ba = fa
(see, for example, Hartshorne [1977, p. 30].)

We now define the derived category D" (M) to be the category K+ (M)
with the quasi-isomorphisms formally inverted. The objects of D*¥(M) are
complexes, and the maps are things of the form aa™! : A — C, where
a: B — Cis amorphism and o : B — A is a quasi-isomorphism in K (M),
modulo an equivalence relation effectively saying that one can cancel a
quasi-isomorphism from a product. We write P : K*(M) — D+*(M) for
the localization functor.

The derived category inherits from K*(M) the structure of a triangu-
lated category: Since the translation functor on K+(M) preserves quasi-
isomorphisms, it induces a functor, called again translation, on D (M), and
we take as a triangle anything quasi-isomorphic to a triangle in K+(M).
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It is interesting to note that any exact sequences of complexes becomes a
triangle of D*(M); this follows from Exercise A3.33.

Just as using the localization of a ring is conceptually simpler than work-
ing in the original ring but “as if” elements of a multiplicative system
were invertible, working in the derived category has proved simpler for
certain applications than working with the category of complexes directly.
However, every quasi-isomorphism between bounded-below projective com-
plexes is actually a homotopy equivalence, so that if we define P to be the
category of projective R-modules, the derived category may be described
simply as K7 (P); see Exercise A3.54.

With these ideas in place we can describe left-derived functors (for right-
derived functors one would use bounded-above complexes and injective
resolutions). If F is an additive functor from M to M, say, then as we have
already noted, F' induces a functor that we may call K(F) : K(M) —
K(M). The left-derived functor LF of F is a functor LF : Dt*(M) —
D+ (M), together with a natural transformation : LF o P — K F, which
gives the “best possible approximation to KF” in the sense that for any
functor G : D*(M) — D*(M) and natural transformation v : GoP — KF,
there is a unique map G — LF such v is the composite GoP — LFoP — F.
The old derived functors L;F are obtained by composing LF with the “ith
homology functor” H, : D™(M) — M.

The first hint of the simplification that is obtained by all this comes
when one considers composite functors. Previously we saw that under good
conditions the derived functors of a composite functor fit into a spectral
sequence (we did this in the text in the context of “change of rings” and in
the exercises in general). But in terms of the derived category, the derived
functor of a composite functor is (under the same favorable circumstances)
simply the composition of derived functors! For example, if S is an R-
algebra, M is an S-module,

F=S5®p—: R—modules — S — modules,

and
G=M®s—:S5—modules — S — modules,

then the spectral sequence
LiG(L;F) = Tor} (M, Tor®(S, N)) = Torf (M, N) = L;;;(G o F)(N),
where N is an R-module, is replaced by the much simpler
LGoLF =L(Go F).
When there are many functors and compositions around, this simplification

can be decisive. Of course, when one wants to make computations one must
fall back to the more concrete language of spectral sequences.
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A3.14.8 FEzxercises on the Derived Category

Exercise A3.51 (The category K+ (M) is not Abelian):* In an Abe-
lian category, every morphism A — C can be factored into an epimorphism
followed by a monomorphism A —» B ~— C. Show that the natural map
Z — Z/(p) gives rise to a map of complexes

that cannot be factored in this way in K+(M).

Exercise A3.52: If A and B are bounded-below complexes of projective
modules, and o : A — B is a quasi-isomorphism, show that « is a homotopy
equivalence.

Exercise A3.53: Let F' be a bounded-below complex of R-modules. Imi-
tate Exercise A3.49 to show that there is a bounded-below complex of
projective R-modules P and a quasi-isomorphism P — F. Such a P is a
projective resolution of F'.

Exercise A3.54: Let K7 (P) be the category whose objects are bounded-
below complexes of projective R-modules, and whose morphisms are homo-
topy classes of morphisms of complexes. Define a “projective resolution
functor” K*(M) — K*(P). Show that it sends quasi-isomorphisms to iso-
morphisms (that is, to homotopy equivalences), and thus induces a func-
tor DT(M) — K*(P). Show that together with the composite functor
K*(?) - K*(M) — D*(M), this defines an equivalence of categories
DT(M) = K+ ().



Appendix 4
A Sketch of Local Cohomology

As we have often seen, there is a tight analogy between local and graded
rings. We have generally started from things that we proved for the local
case and adapted them for the graded case. But the analogy flows in the
other direction too. A graded domain R gives rise to a subvariety X =
Proj R of projective space, and a module M over R gives rise to a sheaf
M on X. One of the most important tools available in this context is the
cohomology H*(X, M ). If we take the local-global analogy seriously, we
should ask whether there is a good local analogue of this cohomology.

The answer is yes, and the corresponding construction is called local
cohomology. We will state some of the most basic definitions and results
pertaining to it but omit the proofs for the sake of brevity. The reader can
find more information in Grothendieck [1967] and Brodmann and Sharp
[1996].

First a general definition: If R is a ring, [ an ideal of R, and M an R-
module, then we define the zeroeth local cohomology module of M with
supports in I to be simply the set of all elements of M which are annihilated
by some power of I:

HY(M) = Upn(0 130 I") = lim Hom(R/I", M),

where (0 :ps I™) denotes the set of elements of M annihilated by I". We
define the higher local cohomology groups as the right-derived functors of
H?—that is, H}(M) is the i cohomology module of the complex obtained
by applying H ? to an injective resolution of M.

Geometrically, if we think of elements of M as global sections of the
sheaf on Spec R associated to M, then the elements of HY(M) are just
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the sections with support on the closed subscheme Spec R/I C Spec R. It
is clear that a similar definition could be made for any closed subscheme
of any scheme, and indeed the theory is most naturally developed in this
context—see, for example, Grothendieck [1967].

It is easy to see that the functor HY is left-exact, and so for any short
exact sequence of modules we get a long exact sequence in local cohomol-
ogy. Since local cohomology is the derived functor, it is universal among
sequences of functors with this property. On the other hand, the functors

Jlim Exth(R/I", M)
behave in a similar way, taking short exact sequences to long exact

sequences. A careful inspection shows that they have the same universal
property as the local cohomology, so they are in fact naturally isomorphic:

Hi(M) = lim Exth(R/I", M).

Besides U,(0 :ps I") and lim, ., Hom(R/I", M), we can express the
zeroeth local cohomology in another way in terms of familiar objects. If
I = (x1,...,z), then the elements of M annihilated by some power of I
are the same as the elements annihilated by some power of each of the z;.
Hence we have

HY(M) = lim HY(M ® K(af,..., 7)),

n—oo

where the maps

H(M®K(z},...,2") - H (M ® Kz}, ..., z™1))

over which the limit is taken are the inclusions
HOM ® K(af,...,a2)) = (0 (af,,22) € (0ar (2, 2)
= H (M e Kz, ... z").

Equivalently, and more usefully, we may think of these maps as induced by
the natural maps of Koszul complexes

K(z},...,z") — K(z'', ...,z

L]

which in degree 1 are given by the map f : R* — R" multiplying the ith
component by z;, and in degree d are A%f, which acts by multiplying a
basis vector e; A---Ae;, by x; ... z;,. Thus we may take the limit in
each of the Koszul homology groups, and arguing as before we get

H{(M) = lim H(M ® K(z},...,z7)).

A4.1 Local Cohomology and Global Cohomology

The last isomorphism above provides the means to relate local cohomology
to the cohomology of coherent sheaves on a projective variety or scheme.
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Suppose that R is graded, with maximal ideal P generated by z, ..., xs,
and having degree 0 part, Ry, a field. We write M for the sheaf induced by
M on the scheme Proj R.

First a general remark which will help to identify the limit of the Koszul
complexes: If we take a sequence of modules M, = M, and maps M, —
M, induced by multiplication by some fixed element a € R, then

lim M,, = M{a™}],

the localization of M with respect to the multiplicative set generated by
a. Of course if a is homogeneous, then the degree 0 part of M|a™!] is the
module of sections of M on the open set a # 0 of Proj R, and M [a~1] itself
is the sum over all v of the global sections of M(r) on the open set a # 0.
If a = x; +... =z, then writing U; for the open set x; # 0, the open set
a # 0 is the intersection U; N---NU,,.

Thus with f as above, the limit of modules isomorphic to M ® AYR?
under the maps induced by A¢f is

T}I_I)I(;IOM X NRS = Di,--i4 Z fIO(l’]i1 Nn---NU,, M(V)lUI]ﬂ...ﬂUld).

Since taking homology commutes with direct limits over directed sets, we
see that the local cohomology of M is the cohomology of the complex

0—- M — @iZHO(Ui,M(V)JUZ) — ...

Uqﬂ"'ﬁUzd) — ...,

v
— Dy ZHO(Uil Mn---N U'id,M(I/)

and except for the first term, this is the Cech complex, whose ith homology
is the ordinary Cech cohomology H' (Proj R, M). This shows that local and
global cohomologies are related in the following way:

Theorem A4.1. If M is a graded R-module, then there is a natural exact
sequence

0— HYM)—> M — > H°(ProjR,M(v)) — H-(M) — 0
P

and for every i > 0 a natural isomorphism

> H(Proj R, M(v)) = Hp (M),

where the sums extend over all positive and negative integers.

One reason that ordinary cohomology is so useful is that each of the
H'(Proj R, M(v)) is a finite-dimensional vector space over the field Ry.
The local cohomology modules, being infinite-direct sums of these, are not
in general finite-dimensional, and in the case where R is local rather than
graded, and P is the maximal ideal, they do not break up into such conve-
nient finite pieces. However, if M is finitely generated one can show directly
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that the H,L(M) are at least Artinian modules. (Reason: The ith step in
an injective resolution of M consists of a direct sum of injective envelopes
E(R/Q) of modules R/Q, with @ a prime ideal, and only finitely many of
each E(R/(Q)) occur. Applying the zeroeth local cohomology functor to one
of these E(R/Q) gives 0 unless @ = P, in which case it gives E(R/P), so
the local cohomology is the homology of a complex of finite direct sums
of copies of E(R/P). Since each of these is an Artinian module, the local
cohomology is too.)

A4.2 Local Duality

One of the most important results about cohomology is the duality theorem,
which for a sheaf F on a d-dimensional projective space X says

HY(X,9) = Exty (F,0x(—d — 1))*,

where * represents Hom into the ground field. Of course if F is invertible,
this degenerates to the more familiar

HY(X,F) =2 H"(X, T '@ wx)".
The local form of this is:

Theorem A4.2. If (S,Q) is a regular local ring of dimension d, and M is
a finitely generated R-module, then

HH(M) = Ext§ (M, R)*,
where * denotes the duality functor Homp(—, E(R/P)).
If (R, P) is a factor ring of a regular local ring ring (S, @), and M is an

R-module, then just as in the case of ordinary cohomology it is easy to see
that the corresponding local cohomology modules agree:

Hy(M) = Hp(M),

so the theorem reduces all local cohomology questions to questions about
Ext modules, at least for rings which are factor rings of regular local rings
(virtually every ring of geometrical interest).

A4.3 Depth and Dimension

In particular, one can deduce from Theorem A4.2, Theorem 18.20, and the
Auslander-Buchsbaum formula that the functor Exty(—, R), and thus also
the local cohomology, measures both the depth and the dimension of a
module.

Theorem A4.3. Let (R, P) be a local ring, and let M be a finitely generated
R-module. Let d = dim M, and let § = depth(P, M). We have:
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a. Ho(M) =0 fori < é and fori > d.
b. Ho(M) #0 fori =46 and fori=d.

Of course it follows that § < d; in the case where M is a factor ring, this is
a consequence of Proposition 18.2, and it can be proved in the same way
in general.

Exercise A4.1:

a: Let (R, P) be a local ring such that Ry is Cohen-Macaulay for every
prime ideal @ # P. Show that Hb(R) has finite length for every
i < dim R.

b: Let R = &450R; be a Noetherian positively graded ring and sup-
pose that Ry is a field. Suppose that R is Cohen-Macaulay for each
homogeneous prime @ # P. Show that Ry is Cohen-Macaulay for
every prime Q' of R, homogeneous or not. Then show that H%(R)
has finite length for every ¢ < dim R.

Exercise A4.2: Let R = @©;>0Rs be a Noetherian positively graded ring
and suppose that Ry is a field. Let P = @4-9Ry be the maximal homoge-
neous ideal. Let Ry = ©4>0Rge be the eth Veronese subring of R, and let
P be its maximal homogeneous ideal.

a: Show that _ | |
Hp, (Ri)) = Hp(R) () = ©aHp(R)se.

b: Deduce from Exercises A4.1b and A4.2a that if Rg is Cohen-
Macaulay for each homogeneous prime @ # P, then HEE)(R(E)) is

concentrated in degree 0 (that is Hp (R()s = 0 for d # 0) for all
sufficiently large integers e and all 4 < dim R.

Exercise A4.3: A local ring (R, P) is said to be Buchsbaum if the natural
map Exth(R/P, R) — (}LI& Ext%(R/P?% R) = H5(R) is an isomorphism for
every ¢ < dim R. It turns out that this somewhat unappetizing definition
leads to a rich and surprising theory; see Stiickrad and Vogel [1986]. Show
that a sufficiently high Veronese embedding of any projective scheme has
Buchsbaum homogeneous coordinate ring as follows. Let R = @459R; be a
Noetherian positively graded ring and suppose that Ry is a field. Suppose
that HL(R) is concentrated in degree 0 for i < d as in Exercise A4.2b.
Show that R is Buchsbaum.



