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1 The Result

A polyhedron is a solid body whose boundary is a finite union of polygons,
called faces . We require that any two faces are either disjoint, or share a
common edge, or share a common vertex. Finally, we require that any edge
common to two faces is not common to any other face.

A dissection of a polyhedron P is a description of P as a finite union of
smaller polyhedra,

P = P1 ∪ ... ∪ Pn, (1)

such that the smaller polyhedra have pairwise disjoint interiors. Note that
there is not an additional assumption, say, that the smaller polyhedra meet
face to face.

Two polyhedra P and Q are scissors congruent if there are dissections
P = P1 ∪ ...∪Pn and Q = Q1 ∪ ...∪Qn such that each Pk is isometric to Qk.
Sometimes, one requires that all the isometries are orientation-preserving,
but in fact and two shapes that are scissors congruent via general isometries
are also scissors congruent via orientation preserving isometries. (This little
fact isn’t something that is important for our purposes.)

One could make the same definition for polygons, and any two polygons
of the same area are scissors congruent to each other. (J. Dupont says that
W. Wallace first formally proved this in 1807.) Hilbert asked if every two
polyhedra of the same volume are scissors congruent to each other. In 1901,
Max Dehn proved the now-famous result that the cube and the regular tetra-
hedron (of the same volume) are not scissors congruent. We’re going to give
a proof of this result.
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2 Dihedral Angles

The dihedral angle is an angle we attach to an edge of a polyhedron. To
define this angle, we rotate so that the edge in question is vertical, and then
we look directly down on the polyhedron. The two faces containing our edge
appear as line segments, and the dihedral angle is the angle between these
line segments. We will measure dihedral angles in such a way that a right
angle has measure 1/4. All the dihedral angles of a cube are 1/4.

All edges of a regular tetrahedron have the same dihedral angle. We’re
going to prove that this common angle is irrational. Geometrically, this is the
same as saying that one cannot fit finitely many tetrahedra precisely around
an edge, even if these tetrahedra are permitted to wrap around more than
once before closing back up.

We will place our tetrahedron in space so that one edge is vertical. Rather
than work in R3, it is useful to work in C×R, where C is the complex plane.
This is a nice way to distinguish the vertical direction. Consider the complex
number

ω =
1

3
+

2
√

2

3
i. (2)

Note that |ω| = 1. Let T0 be the tetrahedron with vertices

(1, 0); (ω, 0);
(

0,
1√
3

)

;
(

0,
−1√

3

)

.

One checks easily that all points of T0 are 2/
√

3 units apart, so that T0 really
is a regular tetrahedron.

Consider the new tetrahedron Tn, with vertices

(ωn, 0); (ωn+1, 0);
(

0,
1√
3

)

;
(

0,
−1√

3

)

.

The tetrahedra T0, T1, T2, ... are just rotated copies of T0. We are rotating
about the vertical axis. Notice that Tn+1 and Tn share a face for every n. To
say that the dihedral angle is irrational is the same as saying that the list
T0, T1, T2, ... is infinite. This is the same as saying that there is no n such
that ωn = 1.

In the next section, we will rule out the possibility that ωn = 1 for any pos-
itive integer n. This means that T0, T1, T2... really is an infinite list. Hence,
the common dihedral angle associated to the edges of a regular tetrahedron
is irrational.
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3 Irrationality Proof

The point of this section is to prove the following result: The complex number

ω =
1

3
+

2
√

2

3
i. (3)

does not satisfy the equation ωn = 1 for any positive integer n. We check by
hand the cases n = 1, 2, 3, 4, 5, 6, leaving the case n ≥ 7.

Let G(ω) be the set of numbers of the form a + bω, where a and b are
integers. This set is discrete: every disk intersects only finitely many elements
of G(ω).

Let n ≥ 7 be the smallest value such that (supposedly) ωn = 1. Let Z[ω]
denote the set of numbers of the form

a1ω + a2ω
2 + ... + anω

n (4)

where a1, ..., an are integers. Z[ω] has the nice property that

(ωa − ωb)c ∈ Z[ω] (5)

for any positive integers a, b, c. This comes from the fact that ωn = 1. There
are at least 7 powers of ω crowded on the unit circle, so at least 2 of them
must be closer then 1 unit apart. But that means we can find integers a and
b such that |z| < 1, where z = ωa − ωb. The numbers z, z2, z3... all belong
to Z[ω], and these numbers are distinct because |zn+1| = |z||zn| < |zn|. So,
Z[ω] is not discrete.

We check that ω satisfies ω2 = (2/3)ω − 1. From this equation, we get

ω3 = ω × ω2 = ω × ((2/3)ω − 1) = (2/3)ω2 − ω = (5/9)ω − (2/3),

and similarly for higher powers of ω. In general,

3n(a1ω + ... + anω
n) = integer + integer × ω. (6)

for any choice of integers a1, ..., an. But then Z[ω] is contained in a scaled-
down copy of G(ω), and hence is discrete. But Z[ω] is not discrete, and we
have a contradiction.
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4 Rational Vector Spaces

Let R = {r1, ..., rn} be a finite list of real numbers. Let V be the set of all
numbers of the form

a0 + a1r1 + ... + aNrN ; a0, a1, ..., aN ∈ Q.

V is a finite dimensional Q-vector space.
We declare two elements v1, v2 ∈ V to be equivalent if v1 − v2 ∈ Q. In

this case we write v1 ∼ v2. Let [v] denote the set of all elements of V that
are equivalent to v. Let W denote the set of equivalence classes of V . The
two operations are given by

[v] + [w] = [v + w]; r[v] = [rv].

The 0-element is given by [0]. One checks easily that these definitions make
sense, and turn W into another finite-dimensional Q-vector space.

Let v1, ..., vm be a basis for V and let w1, ..., wn be a basis for W . The
tensor product V ⊗ W is the Q-vector space of formal linear combinations

∑

i,j

aij(vi ⊗ wj); aij ∈ Q (7)

Here vi ⊗wj is just a formal symbol, but in a compatible way the symbol ⊗
defines a bilinear map from V × W into V ⊗ W :

(

∑

aivi

)

⊗
(

∑

bjwj

)

=
∑

aibj(vi ⊗ wj). (8)

The m × n elements {1(vi ⊗ wj)} serve as as a basis for V ⊗ W .
Here is a basic property of V ⊗ W . If v ∈ V is nonzero and w ∈ W is

nonzero, then v ⊗ w is nonzero. One sees this simply by writing v and w
out in a basis, and considering Equation 8. At least one product aibj will be
nonzero. In particular

6 ⊗ δ 6= 0, (9)

where δ is the dijedral angle of the regular tetrahedron, and R is chosen so
as to contain δ.
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5 Dehn’s Invariant

Let R = {r1, ..., rN} be a finite list of real numbers, and let V and W be the
two examples of vector spaces given in Examples 1 and 2 above. Once again,
V is the set of all numbers of the form

a0 + a1r1 + ... + anrN ; a0, ..., aN ∈ Q,

and W is the set of equivalence classes in V .
Suppose that X is a polyhedron. Let λ1, ..., λk denote the side lengths of

all the edges of X. Let θ1, ..., θk be the dihedral angles, listed in the same
order. We say that X is adapted to R if

λ1, ..., λk, θ1, ..., θk ∈ R. (10)

If X is adapted to R, we define the Dehn invariant as:

〈X〉 =
k

∑

i=1

(λi ⊗ [θi]) ∈ V ⊗ W (11)

The operation ⊗ is as in Equation 7, and the addition makes sense because
V ⊗ W is a vector space.

Suppose now that P and Q are a cube and a regular tetrahedron having
the same volume. Assume R is chosen large enough so that P and Q are
both adapted to R. Let λP and λQ denote the side lengths of P and Q
respectively. Let δP and δQ denote the respective dihedral angles. We have
[δP ] = [1/4] = [0], because 1/4 is rational. On the other hand, we have
already seen that δQ is irrational. Hence [δQ] 6= [0]. This gives us

〈P 〉 = 12λP ⊗ [δP ] = [0]; 〈Q〉 = 6λQ ⊗ [δQ] 6= [0]. (12)

In particular,
〈P 〉 6= 〈Q〉 (13)

To prove Dehn’s theorem, our strategh is to show that the Dehn invariant
is the same for two polyhedra that are scissors congruent. The result in the
next section is the key step in this argument.
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6 Clean Dissections

Say that a clean dissection of a polyhedron X is a dissection X = X1∪...∪XN ,
where each pair of polyhedra are either disjoint or share precisely a lower-
dimensional face. Let R be as above.

Lemma 6.1 Suppose that X = X1 ∪ ... ∪ XN is a clean dissection, and all

polyhedra are adapted to R. Then 〈X〉 = 〈X1〉 + ... + 〈XN〉.

Proof: We will let Y stand for a typical polyhedron on our list. Say that a
flag is a pair (e, Y ), where e is an edge of Y . Then

〈X1〉 + ... + 〈XN〉 = S =
∑

flags

λ ⊗ θ′

We classify the flag (e, Y ) as one of three types.
Type-1: e does not lie on the boundary of P .
Type-2: e lies in the boundary of P , but not in an edge of P .
Type-3: e lies in an edge of P .

We can write S = S1 + S2 + S3 where Sj is the sum over flags of Type j.
Call two flags (e, Y ) and (e′, Y ′) strongly equivalent iff e = e′. Given a

Type-1 edge e, let θ1, ..., θm denote the dijedral angles associated to the flags
involving e. From the clean dissection property, these polyhedra fit exactly
around e, so that (with our special units) θ1 + ... + θm = 1. Hence

∑

λ(e) ⊗ [θj ] = λ(e) ⊗
∑

[θj ] = λ(e) ⊗ [1] = 0.

Summing over all Type-1 equivalence classes, we find that S1 = 0. A similar
argument shows that S2 = 0. In this case θ1 + ... + θk = 1/2.

Now we show that S3 = 〈X〉. Define a weak equivalence class as follows:
(e, P ) and (e′, P ′) are weakly equivalent iff e and e′ lie in the same edge of X.
The weak equivalence classes are bijective with the edges of X. Let e be some
edge of X, with length and dihedral angle λ and θ. Let e1, ..., em be the edges
that appear in weak equivalence class named by e. With the obvious notation
λ = λ1 + ...+λk. Let θj1, ..., θjmj

denote the dihedral angles associated to the
strong equivalence class involving ej . We have θj1 + ...θjmj

= θ. Summing
over the weak equivalence class, we get

∑

jk

λj ⊗ [θjk] =
∑

j

λj ⊗ [θ] = λ(e) ⊗ [θ(e)].

Summing over all weak equivalence classes, we get S3 = 〈X〉, as desired. ♠
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7 The Proof

Let P be a cube and let Q be a tetrahedron. We will suppose that we scissors
congruence between P = P1 ∪ ... ∪ Pn and Q = Q1 ∪ ... ∪ Qn.

We first produce new dissections of P and Q that are clean. Here is the
construction. Let Π1, ..., Πk denote the union of all the planes obtained by
extending the faces of any polyhedron in the above dissection of P . Say that
a chunk is the closure of a component of R − ⋃

Πj. Then we have clean
dissections

Pi = Pi1 ∪ ... ∪ Pini
(14)

of each Pi into chunks, and also the clean dissection

P =
⋃

Pij (15)

of P into chunks. We make all the same definitions for Q. The dissections
in Equation 15 for P and Q might not define a scissors congruence, but we
don’t care.

Let R denote the finite list of lengths and dihedral angles that arise in
any of the polyhedra appearing in our constructions involving P and Q. Let
V ⊗W be the vector space defined as in the previous sections, relative to R.
Computing the Dehn invariants in V ⊗ W , we have

〈P 〉 =
∑

〈Pij〉 =
∑

〈Pi〉 =
∑

〈Qi〉 =
∑

〈Qij〉 = 〈Q〉. (16)

The first equality is obtained by applying Lemma 6.1 to the dissection in
Equation 15. The second equality is obtained by applying Lemma 6.1 to
each dissection in Equation 14 and adding the results. The middle equality
comes from the obvious isometric invariance of the Dehn invariant. The last
two equalities have the same explanations as the first two. In short,

〈P 〉 = 〈Q〉. (17)

This contradicts out computation that 〈P 〉 6= 〈Q〉. The only way out of the
contradiction is that the cube and the tetrahedron are not scissors congruent.
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