
Math 10860: Honors Calculus II, Spring 2021
Homework 5

1. Compute limx→0

(
1
x
− 1

sinx

)
.

Solution: By repeated use of L’Hopital’s rule, we have

lim
x→0

(
1

x
− 1

sinx

)
= lim

x→0

(
sinx− x
x sinx

)
= lim

x→0

(
cosx− 1

sinx+ x cosx

)
= lim

x→0

(
− sinx

cosx+ cosx− x sinx

)
=

− sin 0

2 cos 0− 0 sin 0

= 0.



2. Differentiate these functions: (Convention: ab
c

always means a(b
c).)

(a) f(x) = ee
ee

x

(b) f(x) = e

(∫ x
0 e−t2dt

)
(c) f(x) = (log x)log x

Solution:

(a) f ′(x) = ee
ee

x

ee
ex

ee
x
ex.

(b) f ′(x) = e

(∫ x
0 e−t2dt

)
d
dx

∫ x
0
e−t

2
dt = e

(∫ x
0 e−t2dt

)
e−x

2
.

(c) f ′(x) = d
dx
e(log x)(log log x) = e(log x)(log log x)

(
log log x

x
+ log x

x log x

)
= (log x)log x

(
1+log log x

x

)
.



3. The logarithmic derivative of f is the expression f ′/f . It’s called “logarithmic deriva-
tive” because it is the derivative of log ◦f . It is often easier to compute the derivative
of log of a function than it is to compute the derivative of the function directly, because
taking logs turns products into (simpler to differentiate) sums, and turns powers into
(simpler to differentiate) products. The derivative of the original function can then be
recovered by multiplying by the original function.

Compute the logarithmic derivatives of these functions:

(a) f(x) = xx

(b) f(x) = (3−x)1/3x2
(1−x)(3+x)2/3

(c) f(x) = ex−e−x

e2x(1+x3)

Solution:

(a) f ′(x)
f(x)

= d
dx

log(xx) = d
dx
x log x = x 1

x
+ log x = 1 + log x.

(b) f ′(x)
f(x)

= d
dx

log
(

(3−x)1/3x2
(1−x)(3+x)2/3

)
= d

dx

(
1
3

log(3− x) + 2 log x− log(1− x)− 2
3

log(3 + x)
)

=

− 1
3(3−x) + 2

x
+ 1

1−x −
2

3(3+x)
.

(c) f ′(x)
f(x)

= d
dx

log
(

ex−e−x

e2x(1+x3)

)
= d

dx
(log(ex − e−x)− 2x− log(1 + x3)) = ex+e−x

ex−e−x − 2 −
3x2

1+x3
.



4. Compute these limits:

(a) limx→0
ex−1−x−x2/2

x2

(b) limx→∞
x

(log x)n
, where n is a natural number.

(c) limx→0+
x

(log x)n
, where n is a natural number.

(d) limx→0+ x
x

Solution:

(a) By repeated application of L’Hopital’s rule, we have

lim
x→0

ex − 1− x− x2/2
x2

= lim
x→0

ex − 1− x
2x

= lim
x→0

ex − 1

2

=
e0 − 1

2
= 0.

(b) The limit is ∞, which I will prove by induction on n. When n = 1, we have

lim
x→∞

x

log x
= lim

x→∞

1
1
x

= lim
x→∞

x

=∞.

Now assume that limx→∞
x

(log x)n
= ∞ for some n ∈ N. Then L’Hopital’s rule

gives

lim
x→∞

x

(log x)n+1
= lim

x→∞

1
(n+1)(log x)n

x

=
1

n+ 1
lim
x→∞

x

(log x)n
.

The last limit is∞ by the induction hypothesis, so we conclude that limx→∞
x

(log x)n
=

∞ for all n ∈ N.

(c) The limit is 0. We have limx→0+ f(x) = limx→∞ f( 1
x
) for a function f as long as

one of these limits exists. Thus

lim
x→0+

x

(log x)n
= lim

x→∞

1
x

(log( 1
x
))n

= (−1)n lim
x→∞

1

x(log x)n
.

Since limx→∞ x(log x)n =∞, we have

(−1)n lim
x→∞

1

x(log x)n
= 0.



(d) We have limx→0+ x
x = limx→0+ e

x log x. Since ex is continuous, this equals elimx→0+ x log x.

Next limx→0+ x log x = limx→0+
log x

1
x

= limx→0+
1
x

− 1
x2

= limx→0+ −x = 0. We con-

clude limx→0+ x
x = e0 = 1.



5. Which number is bigger: eπ or πe? (Rigorously justify your answer!)

Solution: I claim that eπ > πe. Consider the function f : (0,∞) → R given by
f(x) = log x

x
. We have f ′(x) = 1−log x

x2
. This is 0 if and only if log x = 1 if and only if

x = e. For x < e, 1− log x > 0, so f ′(x) > 0, and for x > e, 1− log x < 0, so f ′(x) < 0.
Thus The global maximum for f occurs at x = e. So log x

x
< log e

e
= 1

e
for all positive

x 6= e. Then e log x < x, so log(xe) < x, so xe < ex. In particular, letting x = π, we
have eπ > πe.



6. Prove that F (x) =
∫ x
2

dt
log t

is not a bounded function on [2,∞).

Meta-question: Why am I asking this question? There is an important mathemat-
ical concept, one that you’ve been familiar with for many years, and one that most
non-mathematics are familiar with, that this integral is intimately related to. What is
the concept, and what is the connection?

Solution: For all t ≥ 2, we have t > log t. To see this, consider the function f :
[2,∞) → R given by f(t) = t − log t. Then f ′(t) = 1 − 1

t
> 0 for all t ≥ 2, so f is

always increasing. f(2) = 2− log 2 > 0, so indeed f(t) > 0 for all t ≥ 2, so t > log t > 0
for all t ≥ 2. Then 1

t
< 1

log t
, so

F (x) =

∫ x

2

dt

log t

>

∫ x

2

dt

t

= log x− log 2,

and since log x is unbounded on [2,∞), so is F .



7. This question guides you to an alternate expression for e.

(a) Find limy→0
log(1+y)

y
.

(b) Find limx→∞ x log(1 + 1/x).

(c) Prove that

e = lim
x→∞

(
1 +

1

x

)x
.

(d) Go though the same process to argue that for all real a

ea = lim
x→∞

(
1 +

a

x

)x
.

Specifically:

• First, argue limy→0
log(1+ay)

y
= a.

• Next, argue limx→∞ x log(1 + a/x) = a.

• Finally, argue ea = limx→∞
(
1 + a

x

)x
.

Solution:

(a) By L’Hopital’s rule, limy→0
log(1+y)

y
= limy→0

1
1+y

1
= 1.

(b) Arguing as in 4c, we have limx→∞ x log(1+ 1
x
) = limy→0+

1
y

log(1+ 1
1
y

) = limy→0+
log(1+y)

y
=

1.

(c) This is equivalent to proving that 1 = log
(
limx→∞

(
1 + 1

x

)x)
. Since the loga-

rithm function is continuous, log
(
limx→∞

(
1 + 1

x

)x)
= limx→∞ log

((
1 + 1

x

)x)
=

limx→∞ x log
(
1 + 1

x

)
= 1, so we are done.

(d) By L’Hopital’s rule, limy→0
log(1+ay)

y
= limy→0

a
1+ay

1
= a.

Again arguing as in 4c, we have limx→∞ x log(1 + a
x
) = limy→0+

1
y

log(1 + a
1
y

) =

limy→0+
log(1+ay)

y
= a.

Proving the final statement is equivalent to proving a = log
(
limx→∞

(
1 + a

x

)x)
.

Again by continuity of the logarithm function, log
(
limx→∞

(
1 + a

x

)x)
= limx→∞ log

((
1 + a

x

)x)
=

limx→∞ x log
(
1 + a

x

)
= a, so we are done.



8. Newton’s law of cooling says that an object cools at a rate proportional to the difference
between its temperature and the temperature of the surrounding medium. Suppose
that an object has temperature T0 at time t = 0, and that the temperature of the
surrounding medium remains at a constant M throughout time.

Find the temperature of the object at time t (in terms of T0, M , and k, the implicit
constant of proportionality in Newton’s law).

Solution: We are given that T ′(t) = k(T (t)−M) for some constant k. Let F (t) = T (t)−M .
Then F ′(t) = (T (t) −M)′ = T ′(t), so the above is equivalent to F ′(t) = kF (t). We have
previously shown that this implies that F (t) = cekt for a constant c. Then T (t) = M + cekt.
We know T (0) = T0, so T0 = M + cek·0 = M + c, so c = T0 −M . We conclude that the
temperature at time t is given by

T (t) = M + (T0 −M)ekt.


