Math 10860: Honors Calculus II, Spring 2021 Homework 7

This problem will start with a few intergrals, and then transition to questions about Taylor polynomials.

1. Some integrands appropriate for partial fractions. Do any two of these.
(a) $\int \frac{2 x^{2}+7 x-1}{x^{3}-3 x^{2}+3 x-1} d x$.
(b) $\int \frac{3 x^{2}+3 x+1}{x^{3}+2 x^{2}+2 x+1} d x$.
(c) $\int \frac{3 x}{\left(x^{2}+x+1\right)^{3}} d x$.

Solution:
(a) This integrand is equal to

$$
\frac{2 x^{2}+7 x-1}{(x-1)^{3}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}
$$

for some constants A, B, C. Multiplying both sides of the equation by $(x-1)^{3}$, we have $2 x^{2}+7 x-1=A(x-1)^{2}+B(x-1)+C$ for $x \neq 1$. Letting $x \rightarrow 1$, we have $C=8$. The right side is then

$$
\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{8}{(x-1)^{3}}=\frac{A x^{2}+(B-2 A) x+(A-B+8)}{(x-1)^{3}}
$$

and equating coefficients with the numerator of the original expression, we get $A=2$ and $B-2 A=7$, so $B=11$. Thus the integral is

$$
\begin{aligned}
\int \frac{2 x^{2}+7 x-1}{x^{3}-3 x^{2}+3 x-1} d x & =\int\left(\frac{2}{x-1}+\frac{11}{(x-1)^{2}}+\frac{8}{(x-1)^{3}}\right) d x \\
& =2 \log |x-1|-\frac{11}{x-1}-\frac{4}{(x-1)^{2}}
\end{aligned}
$$

(b) The integrand is equal to

$$
\frac{3 x^{2}+3 x+1}{(x+1)\left(x^{2}+x+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+x+1}
$$

for some constants A, B, C. Multiplying both sides of the equatino by $x+1$, we have $\frac{3 x^{2}+3 x+1}{x^{2}+x+1}=A+(x+1) \frac{B x+C}{x^{2}+x+1}$ for $x \neq-1$. Letting $x \rightarrow-1$, we have $A=1$. The right side is then

$$
\frac{1}{x+1}+\frac{B x+C}{x^{2}+x+1}=\frac{(B+1) x^{2}+(B+C+1) x+(C+1)}{(x+1)\left(x^{2}+x+1\right)}
$$

and equation coefficients with the numerator of the original expression, we get $B=2$ and $C=0$. Thus the integral is

$$
\begin{aligned}
\int \frac{3 x^{2}+3 x+1}{x^{3}+2 x^{2}+2 x+1} d x & =\int\left(\frac{1}{x+1}+\frac{2 x}{x^{2}+x+1}\right) d x \\
& =\log |x+1|+\int\left(\frac{2 x+1}{x^{2}+x+1}-\frac{1}{x^{2}+x+1}\right) d x \\
& =\log |x+1|+\log \left(x^{2}+x+1\right)-\int \frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x
\end{aligned}
$$

Letting $x+\frac{1}{2}=\frac{\sqrt{3}}{2} \tan \theta$, so $d x=\frac{\sqrt{3}}{2} \sec ^{2} \theta d \theta$, the rightmost integral is

$$
\begin{aligned}
\int \frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}} d x & =\frac{2 \sqrt{3}}{3} \int d \theta \\
& =\frac{2 \sqrt{3}}{3} \theta \\
& =\frac{2 \sqrt{3}}{3} \arctan \left(\frac{2 x+1}{\sqrt{3}}\right)
\end{aligned}
$$

so we have

$$
\int \frac{3 x^{2}+3 x+1}{x^{3}+2 x^{2}+2 x+1} d x=\log |x+1|+\log \left(x^{2}+x+1\right)-\frac{2 \sqrt{3}}{3} \arctan \left(\frac{2 x+1}{\sqrt{3}}\right) .
$$

(c) The integral is equal to

$$
\begin{aligned}
\int \frac{3 x}{\left(x^{2}+x+1\right)^{3}} d x & =\frac{3}{2} \int \frac{2 x+1}{\left(x^{2}+x+1\right)^{3}} d x-\frac{3}{2} \int \frac{1}{\left(x^{2}+x+1\right)^{3}} d x \\
& =-\frac{3}{4\left(x^{2}+x+1\right)^{2}}-\frac{3}{2} \int \frac{1}{\left(\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}\right)^{3}} d x \\
& =-\frac{3}{4\left(x^{2}+x+1\right)^{2}}-96 \int \frac{1}{\left((2 x+1)^{2}+3\right)^{3}} d x
\end{aligned}
$$

In the last integral, let $2 x+1=\sqrt{3} \tan \theta$, so $d x=\frac{\sqrt{3}}{2} \sec ^{2} \theta d \theta$. The integral is
then

$$
\begin{aligned}
\int \frac{1}{\left((2 x+1)^{2}+3\right)^{3}} d x & =\frac{\sqrt{3}}{54} \int \frac{1}{\sec ^{4} \theta} d \theta \\
& =\frac{\sqrt{3}}{54} \int \cos ^{4} \theta d \theta \\
& =\frac{\sqrt{3}}{216} \int(1+\cos 2 \theta)^{2} d \theta \\
& =\frac{\sqrt{3}}{216} \int\left(1+2 \cos 2 \theta+\cos ^{2} 2 \theta\right) d \theta \\
& =\frac{\sqrt{3}}{216} \int\left(1+2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2}\right) d \theta \\
& =\frac{\sqrt{3}}{144} \theta+\frac{\sqrt{3}}{216} \sin 2 \theta+\frac{\sqrt{3}}{1728} \sin 4 \theta \\
& =\frac{\sqrt{3}}{144} \arctan \left(\frac{2 x+1}{\sqrt{3}}\right)+\frac{\sqrt{3}}{216} \sin \left(2 \arctan \left(\frac{2 x+1}{\sqrt{3}}\right)\right) \\
& +\frac{\sqrt{3}}{1728} \sin \left(4 \arctan \left(\frac{2 x+1}{\sqrt{3}}\right)\right)
\end{aligned}
$$

Thus our integral is equal to

$$
\begin{aligned}
-\frac{3}{4\left(x^{2}+x+1\right)^{2}}-\frac{2 \sqrt{3}}{3}\left(\arctan \left(\frac{2 x+1}{\sqrt{3}}\right)\right. & +\frac{2}{3} \sin \left(2 \arctan \left(\frac{2 x+1}{\sqrt{3}}\right)\right) \\
& \left.+\frac{1}{12} \sin \left(4 \arctan \left(\frac{2 x+1}{\sqrt{3}}\right)\right)\right)
\end{aligned}
$$

2. A pot-pourri with a (slightly non-obvious) trigonometric flavor. Do part (a) and one of the other two.
(a) $\int \sqrt{1-4 x-2 x^{2}} d x$.
(b) $\int \cos x \sqrt{9+25 \sin ^{2} x} d x$.
(c) $\int e^{4 x} \sqrt{1+e^{2 x}} d x$.

Solution:
(a) The integral is equal to

$$
\int \sqrt{1-4 x-2 x^{2}} d x=\int \sqrt{3-2(x+1)^{2}} d x
$$

Let $\sqrt{2}(x+1)=\sqrt{3} \sin \theta$, so $d x=\frac{\sqrt{3}}{\sqrt{2}} \cos \theta d \theta$. The integral is then

$$
\begin{aligned}
\int \sqrt{3-2(x+1)^{2}} d x & =\frac{3}{\sqrt{2}} \int \cos ^{2} \theta d \theta \\
& =\frac{3}{2 \sqrt{2}} \int(1+\cos 2 \theta) d \theta \\
& =\frac{3}{2 \sqrt{2}}\left(\theta+\frac{1}{2} \sin 2 \theta\right) \\
& =\frac{3}{2 \sqrt{2}}(\theta+\sin \theta \cos \theta) \\
& =\frac{3}{2 \sqrt{2}}\left(\arcsin \left(\frac{\sqrt{2}}{\sqrt{3}}(x+1)\right)+\frac{\sqrt{2}}{3}(x+1) \sqrt{1-4 x-2 x^{2}}\right)
\end{aligned}
$$

(b) Let $u=\sin x$, so $d u=\cos x d x$. The integral is then

$$
\int \cos x \sqrt{9+25 \sin ^{2} x} d x=\int \sqrt{9+25 u^{2}} d u
$$

Let $u=\frac{3}{5} \tan \theta$, so $d u=\frac{3}{5} \sec ^{2} \theta d \theta$. The integral equals

$$
\int \sqrt{9+25 u^{2}} d u=\frac{9}{5} \int \sec ^{3} \theta d \theta
$$

Integrating by parts, we have

$$
\begin{aligned}
\int \sec ^{3} \theta d \theta & =\int \sec \theta \sec ^{2} \theta d \theta \\
& =\sec \theta \tan \theta-\int \tan \theta \sec \theta \tan \theta d \theta \\
& =\sec \theta \tan \theta-\int\left(\sec ^{2} \theta-1\right) \sec \theta d \theta \\
& =\sec \theta \tan \theta+\int \sec \theta d \theta-\int \sec ^{3} \theta d \theta \\
& =\sec \theta \tan \theta+\log |\sec \theta+\tan \theta|-\int \sec ^{3} \theta d \theta
\end{aligned}
$$

so moving the adding $\int \sec ^{3} \theta d \theta$ to both sides and dividing by 2 , we have

$$
\int \sec ^{3} \theta d \theta=\frac{1}{2}(\sec \theta \tan \theta+\log |\sec \theta+\tan \theta|)
$$

so our integral is

$$
\begin{aligned}
\int \cos x \sqrt{9+25 \sin ^{2} x} d x & =\frac{9}{10}(\sec \theta \tan \theta+\log |\sec \theta+\tan \theta|) \\
& =\frac{9}{10}\left(\frac{5}{3} u \sqrt{1+\frac{25}{9} u^{2}}+\log \left|\frac{5}{3} u+\sqrt{1+\frac{25}{9} u^{2}}\right|\right) \\
& =\frac{1}{2} u \sqrt{9+25 u^{2}}+\frac{9}{10} \log \left|\frac{5}{3} u+\frac{1}{3} \sqrt{9+25 u^{2}}\right| \\
& =\frac{1}{2} \sin x \sqrt{9+25 \sin ^{2} x}+\frac{9}{10} \log \left|\frac{5}{3} \sin x+\frac{1}{3} \sqrt{9+25 \sin ^{2} x}\right|
\end{aligned}
$$

(c) Let $u=1+e^{2 x}$, so $d u=2 e^{2 x} d x$. We have $e^{4 x}=e^{2 x} e^{2 x}=(u-1) e^{2 x}$, so the integral is

$$
\begin{aligned}
\int e^{4 x} \sqrt{1+e^{2 x}} d x & =\frac{1}{2} \int(u-1) \sqrt{u} 2 e^{2 x} d x \\
& =\frac{1}{2} \int\left(u^{\frac{3}{2}}-u^{\frac{1}{2}}\right) d u \\
& =\frac{1}{2}\left(\frac{2}{5} u^{\frac{5}{2}}-\frac{2}{3} u^{\frac{3}{2}}\right) \\
& =\frac{\left(1+e^{2 x}\right)^{\frac{5}{2}}}{5}-\frac{\left(1+e^{2 x}\right)^{\frac{3}{2}}}{3}
\end{aligned}
$$

3. Finally, another pot-pourri. Who knows what methods might be needed? Do any two of these.
(a) $\int \frac{x \arctan x}{\left(1+x^{2}\right)^{3}} d x$.
(b) $\int \log \sqrt{1+x^{2}} d x$.
(c) $\int \sqrt{\tan x} d x$.

Solution:
(a) Integrating by parts with $u=\arctan x$ and $d v=\frac{x}{\left(1+x^{2}\right)^{3}} d x$, the integral is

$$
\int \frac{x \arctan x}{\left(1+x^{2}\right)^{3}} d x=-\frac{\arctan x}{4\left(1+x^{2}\right)^{2}}+\frac{1}{4} \int \frac{1}{\left(1+x^{2}\right)^{3}} d x
$$

Letting $x=\tan \theta$, so $d x=\sec ^{2} \theta d \theta$, the right integral is

$$
\begin{aligned}
\int \frac{1}{\left(1+x^{2}\right)^{3}} d x & =\int \frac{1}{\sec ^{4} \theta} d \theta \\
& =\int \cos ^{4} \theta d \theta \\
& =\frac{1}{4} \int(1+\cos 2 \theta)^{2} d \theta \\
& =\frac{1}{4} \int\left(1+2 \cos 2 \theta+\cos ^{2} 2 \theta\right) d \theta \\
& =\frac{1}{4} \int\left(1+2 \cos 2 \theta+\frac{1+\cos 4 \theta}{2}\right) d \theta \\
& =\frac{3}{8} \theta+\frac{1}{4} \sin 2 \theta+\frac{1}{32} \sin 4 \theta \\
& =\frac{3}{8} \arctan x+\frac{1}{4} \sin (2 \arctan x)+\frac{1}{32} \sin (4 \arctan x)
\end{aligned}
$$

Thus our integral is

$$
\int \frac{x \arctan x}{\left(1+x^{2}\right)^{3}} d x=-\frac{\arctan x}{4\left(1+x^{2}\right)^{2}}+\frac{3}{32} \arctan x+\frac{1}{16} \sin (2 \arctan x)+\frac{1}{128} \sin (4 \arctan x) .
$$

(b) We have $\log \sqrt{1+x^{2}}=\frac{1}{2} \log \left(1+x^{2}\right)$. Integrating by parts with $u=\log \left(1+x^{2}\right)$ and $d v=1 d x$, the integral is

$$
\begin{aligned}
\int \log \sqrt{1+x^{2}} d x & =\frac{1}{2}\left(x \log \left(1+x^{2}\right)-2 \int \frac{x^{2}}{1+x^{2}} d x\right) \\
& =\frac{1}{2}\left(x \log \left(1+x^{2}\right)-2 \int\left(\frac{1+x^{2}}{1+x^{2}}-\frac{1}{1+x^{2}}\right) d x\right) \\
& =\frac{1}{2}\left(x \log \left(1+x^{2}\right)-2 x+2 \arctan x\right) \\
& =x \log \sqrt{1+x^{2}}-x+\arctan x
\end{aligned}
$$

(c) Let $I=\int \sqrt{\tan x} d x$ and let $J=\int \sqrt{\cot x} d x$. We have $I=\frac{(I+J)+(I-J)}{2}$, so if we can find $I+J$ and $I-J$ we are done. We have

$$
\begin{aligned}
I+J & =\int(\sqrt{\tan x}+\sqrt{\cot x}) d x \\
& =\int\left(\sqrt{\frac{\sin x}{\cos x}}+\sqrt{\frac{\cos x}{\sin x}}\right) d x \\
& =\int \frac{\sin x+\cos x}{\sqrt{\sin x \cos x}} d x
\end{aligned}
$$

Notice that $(\sin x-\cos x)^{2}=\sin ^{2} x-2 \sin x \cos x+\cos ^{2} x=1-2 \sin x \cos x$, so $\frac{1}{2}-\frac{1}{2}(\sin x-\cos x)^{2}=\sin x \cos x$. Thus the integral above is

$$
\int \frac{\sin x+\cos x}{\sqrt{\sin x \cos x}} d x=\sqrt{2} \int \frac{\sin x+\cos x}{\sqrt{1-(\sin x-\cos x)^{2}}} d x
$$

Letting $u=\sin x-\cos x$, so $d u=(\sin x+\cos x) d x$, this is equal to

$$
\begin{aligned}
\sqrt{2} \int \frac{\sin x+\cos x}{\sqrt{1-(\sin x-\cos x)^{2}}} d x & =\sqrt{2} \int \frac{1}{\sqrt{1-u^{2}}} d u \\
& =\sqrt{2} \arcsin u \\
& =\sqrt{2} \arcsin (\sin x-\cos x)
\end{aligned}
$$

Next, we have

$$
\begin{aligned}
I-J & =\int(\sqrt{\tan x}-\sqrt{\cot x}) d x \\
& =\int\left(\sqrt{\frac{\sin x}{\cos x}}-\sqrt{\frac{\cos x}{\sin x}}\right) d x \\
& =\int \frac{\sin x-\cos x}{\sqrt{\sin x \cos x}} d x \\
& =\sqrt{2} \int \frac{\sin x-\cos x}{\sqrt{(\sin x+\cos x)^{2}-1}} d x
\end{aligned}
$$

Letting $u=\sin x+\cos x$, so $d u=-(\sin x-\cos x) d x$, this is equal to

$$
\sqrt{2} \int \frac{\sin x-\cos x}{\sqrt{(\sin x+\cos x)^{2}-1}} d x=-\sqrt{2} \int \frac{1}{\sqrt{u^{2}-1}} d u .
$$

Letting $u=\sec \theta$, so $d u=\sec \theta \tan \theta d \theta$, this is equal to

$$
\begin{aligned}
-\sqrt{2} \int \frac{1}{\sqrt{u^{2}-1}} d u & =-\sqrt{2} \int \sec \theta d \theta \\
& =-\sqrt{2} \log |\sec \theta+\tan \theta| \\
& =-\sqrt{2} \log \left|u+\sqrt{u^{2}-1}\right| \\
& =-\sqrt{2} \log |\sin x+\cos x+2 \sqrt{\sin x \cos x}| .
\end{aligned}
$$

We conclude that

$$
\begin{aligned}
\int \sqrt{\tan x} d x & =\frac{(I+J)+(I-J)}{2} \\
& =\frac{\sqrt{2}}{2} \arcsin (\sin x-\cos x)-\frac{\sqrt{2}}{2} \log |\sin x+\cos x+2 \sqrt{\sin x \cos x}|
\end{aligned}
$$

4. This question concerns the function f defined by $f(x)=\sqrt{x}$, and its Taylor polynomial of degree 3 at $a=4$, which we will write $P_{3,4, f}$.
(a) Find $P_{3,4, f}(x)$.
(b) What does the Lagrange form of Taylor's Theorem say about the remainder $R_{3,4, f}(x)$?
(c) Use Taylor's theorem (and the computations of the previous parts) to show that $\sqrt{5}$ lies between $\frac{36640-5}{16384}$ and $\frac{36640+5}{16384}$

Solution:
(a) First we calculate the first three derivatives:

$$
\begin{aligned}
f(x) & =x^{\frac{1}{2}} \\
f^{\prime}(x) & =\frac{1}{2} x^{-\frac{1}{2}} \\
f^{\prime \prime}(x) & =-\frac{1}{4} x^{-\frac{3}{2}} \\
f^{\prime \prime \prime}(x) & =\frac{3}{8} x^{-\frac{5}{2}}
\end{aligned}
$$

so

$$
\begin{aligned}
f(4) & =2 \\
f^{\prime}(4) & =\frac{1}{4} \\
f^{\prime \prime}(4) & =-\frac{1}{32} \\
f^{\prime \prime \prime}(4) & =\frac{3}{256}
\end{aligned}
$$

From this we get

$$
\begin{aligned}
P_{3,4, f}(x) & =\frac{2}{0!}+\frac{1}{4 \cdot 1!}(x-4)-\frac{1}{32 \cdot 2!}(x-4)^{2}+\frac{3}{256 \cdot 3!}(x-4)^{3} \\
& =2+\frac{1}{4}(x-4)-\frac{1}{64}(x-4)^{2}+\frac{1}{512}(x-4)^{3} .
\end{aligned}
$$

(b) The fourth derivative is $f^{\prime \prime \prime \prime}(x)=-\frac{15}{16} x^{-\frac{7}{2}}$. The Lagrange form tells us that the remainder is given by

$$
\begin{aligned}
R_{3,4, f}(x) & =-\frac{15}{16 t^{\frac{7}{2}} \cdot 4!}(x-4)^{4} \\
& =-\frac{5}{128 t^{\frac{7}{2}}}(x-4)^{4},
\end{aligned}
$$

where t is some real number between 4 and x.
(c) When $x>4, t>4$, so $\frac{1}{t^{\frac{7}{2}}}<\frac{1}{4^{\frac{7}{2}}}=\frac{1}{128}$. In this case we then have

$$
\begin{aligned}
\left|R_{3,4, f}(x)\right| & =\left|-\frac{5}{128 t^{\frac{7}{2}}}(x-4)^{4}\right| \\
& =\frac{5}{128 t^{\frac{7}{2}}}(x-4)^{4} \\
& <\frac{5}{128^{2}}(x-4)^{4} \\
& =\frac{5}{16384}(x-4)^{2} .
\end{aligned}
$$

Letting $x=5$, we have

$$
\left|R_{3,4, f}(5)\right|<\frac{5}{16384}
$$

Notice that $P_{3,4, f}(5)=2+\frac{1}{4}-\frac{1}{64}+\frac{1}{512}=\frac{1145}{512}$, which implies that

$$
\sqrt{5}=\frac{1145}{512}+R_{3,4, f}(5)
$$

so $\sqrt{5} \in\left(\frac{1145}{512}-\frac{5}{16384}, \frac{1145}{512}+\frac{5}{16384}\right)$, so

$$
\sqrt{5} \in\left(\frac{36640-5}{16384}, \frac{36640+5}{16384}\right) .
$$

5. (a) Find the Taylor polynomial of degree 4 of $f(x)=x^{5}+x^{3}+x$ at $a=1$.
(b) Express the polynomial $p(x)=A x^{3}+B x^{2}+C x+D$ as a polynomial in $(x-2)$ in two ways:
i. By explicit algebra and factoring.
ii. Using facts about Taylor polynomials.

Solution:
(a) We first calculate the first 4 derivatives:

$$
\begin{aligned}
f(x) & =x^{5}+x^{3}+x \\
f^{\prime}(x) & =5 x^{4}+3 x^{2}+1 \\
f^{\prime \prime}(x) & =20 x^{3}+6 x \\
f^{\prime \prime \prime}(x) & =60 x^{2}+6 \\
f^{\prime \prime \prime \prime}(x) & =120 x,
\end{aligned}
$$

so

$$
\begin{aligned}
f(1) & =3 \\
f^{\prime}(1) & =9 \\
f^{\prime \prime}(1) & =26 \\
f^{\prime \prime \prime}(1) & =66 \\
f^{\prime \prime \prime \prime}(1) & =120 .
\end{aligned}
$$

We conclude that

$$
P_{4,1, f}(x)=3+9(x-1)+13(x-1)^{2}+11(x-1)^{3}+5(x-1)^{4} .
$$

(b) i. Let

$$
\begin{aligned}
p(x) & =a(x-2)^{3}+b(x-2)^{2}+c(x-2)+d \\
& =a\left(x^{3}-6 x^{2}+12 x-8\right)+b\left(x^{2}-4 x+4\right)+c(x-2)+d \\
& =a x^{3}+(b-6 a) x^{2}+(12 a-4 b+c) x+(4 b-8 a-2 c+d)
\end{aligned}
$$

for some constants a, b, c, d. Equating coefficients, we first get $a=A$, so $b-6 A=B$, giving $b=6 A+B$. Then we have $12 A-4(6 A+B)+c=C$, so $c=12 A+4 B+C$, and finally $4(6 A+B)-8 A-2(12 A+4 B+C)+d=D$, so $d=8 A+4 B+2 C+D$. From this we get

$$
p(x)=A(x-2)^{3}+(6 A+B)(x-2)^{2}+(12 A+4 B+C)(x-2)+(8 A+4 B+2 C+D)
$$

ii. It suffices to calculate the degree 3 Taylor polynomial at 2 , because the remainder will be 0 since $p^{(4)}(x)=0$ for all x. We have the following derivatives:

$$
\begin{aligned}
p(x) & =A x^{3}+B x^{2}+C x+D \\
p^{\prime}(x) & =3 A x^{2}+2 B x+C \\
p^{\prime \prime}(x) & =6 A x+2 B \\
p^{\prime \prime \prime}(x) & =6 A,
\end{aligned}
$$

SO

$$
\begin{aligned}
p(2) & =8 A+4 B+2 C+D \\
p^{\prime}(2) & =12 A+4 B+C \\
p^{\prime \prime}(2) & =12 A+2 B \\
p^{\prime \prime \prime}(2) & =6 A .
\end{aligned}
$$

Thus we have

$$
p(x)=A(x-2)^{3}+(6 A+B)(x-2)^{2}+(12 A+4 B+C)(x-2)+(8 A+4 B+2 C+D)
$$

6. Let $f(x)=\log (1+x)$.
(a) Find the Taylor polynomial of degree n of $f(x)$ about $a=0$, denoted $P_{n, 0, f}(x)$.
(b) Show that for $-1<x \leq 1$ the remainder term $R_{n, 0, f}$ goes to zero as n goes to infinity. Hint: If you have trouble doing with with the Lagrange form of Taylor's theorem, try just starting with the definition:

$$
\log (1+x)=\int_{0}^{x} \frac{d t}{1+t}
$$

(c) Use Taylor polynomials, and your analysis of the remainder term, to find a rational number that is within ± 0.1 of $\log 2$.
(d) Show that for $x>1$ the remainder term $R_{n, 0, f}(x)$ does not go to zero as n goes to infinity.
(e) Nevertheless, use Taylor polynomials (slightly cleverly) to find a rational number that is within ± 0.1 of $\log 3$.

Solution:
(a) We have

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{1+x} \\
f^{\prime \prime}(x) & =-\frac{1}{(1+x)^{2}}, \\
f^{\prime \prime \prime}(x) & =\frac{2}{(1+x)^{3}}, \\
f^{\prime \prime \prime \prime}(x) & =-\frac{3 \cdot 2}{(1+x)^{4}},
\end{aligned}
$$

In general, it is not hard to see that $f^{(n)}(x)=(-1)^{n-1} \frac{(n-1)!}{(1+x)^{n}}$ for $n \geq 1$, so $\frac{f^{(n)}(0)}{n!}=(-1)^{n-1} \frac{(n-1)!}{n!}=\frac{(-1)^{n-1}}{n}$ for $n \geq 1$. Also $f(0)=0$. Thus

$$
\begin{aligned}
P_{n, 0, f}(x) & =\sum_{k=1}^{n} \frac{(-1)^{n-1}}{n} x^{k} \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n} .
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
\log (1+x) & =\int_{0}^{x} \frac{1}{1+t} d t \\
& =\int_{0}^{x}\left(1-t+t^{2}-t^{3}+\cdots+(-t)^{n-1}+\frac{(-t)^{n}}{1+t}\right) d t \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}+(-1)^{n} \int_{0}^{x} \frac{t^{n}}{1+t} d t \\
& =P_{n, 0, f}(x)+(-1)^{n} \int_{0}^{x} \frac{t^{n}}{1+t} d t
\end{aligned}
$$

so $R_{n, 0, f}(x)=(-1)^{n} \int_{0}^{x} \frac{t^{n}}{1+t} d t$. For $0 \leq x \leq 1$, we have $1 \leq 1+t$ for all $t \in[0, x]$, so $\frac{1}{1+t} \leq 1$, so

$$
\begin{aligned}
\left|R_{n, 0, f}(x)\right| & =\left|(-1)^{n} \int_{0}^{x} \frac{t^{n}}{1+t} d t\right| \\
& =\int_{0}^{x} \frac{t^{n}}{1+t} d t \\
& \leq \int_{0}^{x} t^{n} d t \\
& =\frac{x^{n+1}}{n+1}
\end{aligned}
$$

since $0 \leq x \leq 1$, we have $0 \leq x^{n+1} \leq 1$, so $0 \leq \frac{x^{n+1}}{n+1} \leq \frac{1}{n+1}$. Since $\frac{1}{n+1} \rightarrow 0$, the remainder approaches 0 as well.

Now, for $-1<x<0$, we have $1+t \geq 1+x>0$, so $\frac{1}{1+t} \leq \frac{1}{1+x}$. We then have

$$
\begin{aligned}
\left|R_{n, 0, f}(x)\right| & =\left|(-1)^{n} \int_{0}^{x} \frac{t^{n}}{1+t} d t\right| \\
& \leq \int_{0}^{x} \frac{|t|^{n}}{1+t} d t \\
& \leq \frac{1}{1+x} \int_{0}^{x}|t|^{n} d t \\
& =\frac{|x|^{n+1}}{(n+1)(x+1)}
\end{aligned}
$$

Arguing as above, this approaches 0 as $n \rightarrow \infty$.
(c) We must find an integer n such that $\left|R_{n, 0, f}(1)\right| \leq \frac{1}{10}$. From the above computation, since $1 \in[0,1]$ we know that $\left|R_{n, 0, f}(1)\right| \leq 1^{n+1} n+1=\frac{1}{n+1}$, so when $n \geq 9$ we have the desired inequality. Thus

$$
\begin{aligned}
P_{9,0, f}(1) & =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9} \\
& =\frac{1879}{2520}
\end{aligned}
$$

has the property that

$$
\log 2 \in\left(\frac{1879}{2520}-\frac{1}{10}, \frac{1879}{2520}+\frac{1}{10}\right)
$$

(d) For $x>1$, we have $0<1+t \leq 1+x$, so $\frac{1}{1+t} \geq \frac{1}{1+x}$. Thus

$$
\begin{aligned}
\left|R_{n, 0, f}(x)\right| & =\left|(-1)^{n} \int_{0}^{x} \frac{t^{n}}{1+t} d t\right| \\
& =\int_{0}^{x} \frac{t^{n}}{1+t} d t \\
& \geq \frac{1}{1+x} \int 0^{x} t^{n} d t \\
& =\frac{1}{1+x} \frac{x^{n+1}}{n+1}
\end{aligned}
$$

Since $x>1$ the final term approaches ∞ as $n \rightarrow \infty$, so the remainder does not approach 0 .
(e) We have $\log 3=-\log \frac{1}{3}$. Letting $x=-\frac{2}{3}$, we must find n such that $\left|R_{n, 0, f}(x)\right| \leq$ $\frac{1}{10}$. From the above computations, since $-1<x<0$, we have

$$
\begin{aligned}
\left|R_{n, 0, f}\left(-\frac{2}{3}\right)\right| & \leq \frac{\left|-\frac{2}{3}\right|^{n+1}}{(n+1)\left(-\frac{2}{3}+1\right)} \\
& =\frac{2^{n+1}}{3^{n}(n+1)}
\end{aligned}
$$

When $n=4$, the last expression is $\frac{32}{81 \cdot 5}=\frac{32}{405} \leq \frac{1}{10}$, so we must take $n \geq 4$. Then

$$
\begin{aligned}
-P_{4,0, f}\left(-\frac{2}{3}\right) & =-\left(-\frac{2}{3}-\frac{\left(-\frac{2}{3}\right)^{2}}{2}+\frac{\left(-\frac{2}{3}\right)^{3}}{3}-\frac{\left(-\frac{2}{3}\right)^{4}}{4}\right) \\
& =\frac{28}{27}
\end{aligned}
$$

has the property that

$$
\log 3 \in\left(\frac{28}{27}-\frac{1}{10}, \frac{28}{27}+\frac{1}{10}\right)
$$

7. (a) Prove that if $f^{\prime \prime}(a)$ exists, then

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}} .
$$

Hint: use the Taylor polynomial $P_{2, a, f}(x)$ with $x=a+h$ and $x=a-h$. Of course, Taylor's theorem will be important here!
(b) Let

$$
f(x)= \begin{cases}x^{2} & \text { if } x \geq 0 \\ -x^{2} & \text { if } x \leq 0\end{cases}
$$

Show that $f^{\prime \prime}(0)$ does not exist, but that

$$
\lim _{h \rightarrow 0} \frac{f(0+h)+f(0-h)-2 f(0)}{h^{2}}
$$

does exist.
(c) If it exists, we will call the value

$$
\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}
$$

the Schwarz second derivative of $f(x)$ at $x=a$. From the previous two parts, we know that this agrees with the ordinary second derivative if that exists, but that the Schwarz second derivative can exist even if $f^{\prime \prime}(a)$ does not exist. Problem: Prove that if $f(x)$ has a local maximum at $x=a$ and the Schwarz second derivative at $x=a$ exists, then it is ≤ 0.
(d) Prove that if $f^{\prime \prime \prime}(a)$ exists, then

$$
\frac{f^{\prime \prime \prime}(a)}{3}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)-2 h f^{\prime}(a)}{h^{3}} .
$$

Solution:
(a) We have

$$
\begin{aligned}
& f(a+h)=f(a)+f^{\prime}(a) h+\frac{f^{\prime \prime}(a) h^{2}}{2}+R_{2, a, f}(h) \\
& f(a-h)=f(a)-f^{\prime}(a) h+\frac{f^{\prime \prime}(a) h^{2}}{2}+R_{2, a, f}(-h)
\end{aligned}
$$

so for $h \neq 0$ we have

$$
\begin{aligned}
\frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}} & =\frac{2 f(a)+R_{2, a, f}(h)+f^{\prime \prime}(a) h^{2}+R_{2, a, f}(-h)-2 f(a)}{h^{2}} \\
& =f^{\prime \prime}(a)+\frac{\left.R_{2, a, f}(h)\right)}{h^{2}}+\frac{\left.R_{2, a, f}(-h)\right)}{h^{2}} .
\end{aligned}
$$

Since $\lim _{h \rightarrow 0} \frac{R_{2, a, f}(h)}{h^{2}}=\lim _{h \rightarrow 0} \frac{R_{2, a, f f}(-h)}{h^{2}}=0$, we have

$$
\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}=f^{\prime \prime}(a) .
$$

(b) We have $f^{\prime}(x)=\left\{\begin{array}{ll}2 x, & x \geq 0 \\ -2 x, & x \leq 0\end{array}=|2 x|\right.$, and $|2 x|$ is not differentiable at 0 , so $f^{\prime \prime}(0)$ does not exist. However,

$$
\begin{aligned}
\lim _{h \rightarrow 0^{+}} \frac{f(0+h)+f(0-h)-2 f(0)}{h^{2}} & =\lim _{h \rightarrow 0^{+}} \frac{h^{2}-h^{2}-2 \cdot 0}{h^{2}} \\
& =0 \\
& =\lim _{h \rightarrow 0^{-}} \frac{-h^{2}+h^{2}-2 \cdot 0}{h^{2}} \\
& =\lim _{h \rightarrow 0^{-}} \frac{f(0+h)+f(0-h)-2 f(0)}{h^{2}}
\end{aligned}
$$

so this limit exists and equals 0 .
(c) Since f has a maximum at a, for h sufficiently close to 0 , we have $f(a+h) \leq f(a)$ and $f(a-h) \leq f(a)$, so $f(a+h)+f(a-h) \leq 2 f(a)$, so

$$
\frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}} \leq 0,
$$

which implies that the limit as $h \rightarrow 0$ is ≤ 0, which exists by assumption.
(d) Arguing as above, we have

$$
\begin{aligned}
& f(a+h)=f(a)+f^{\prime}(a) h+\frac{f^{\prime \prime}(a) h^{2}}{2}+\frac{f^{\prime \prime \prime}(a) h^{3}}{6}+R_{3, a, f}(h), \\
& f(a-h)=f(a)-f^{\prime}(a) h+\frac{f^{\prime \prime}(a) h^{2}}{2}-\frac{f^{\prime \prime \prime}(a) h^{3}}{6}+R_{3, a, f}(-h),
\end{aligned}
$$

so for $h \neq 0$ we have

$$
\begin{aligned}
\frac{f(a+h)-f(a-h)-2 h f^{\prime}(a)}{h^{3}} & =\frac{2 f^{\prime}(a) h+\frac{f^{\prime \prime \prime}(a) h^{3}}{3}+R_{3, a, f}(h)-R_{3, a, f}(-h)-2 h f^{\prime}(a)}{h^{3}} \\
& =\frac{f^{\prime \prime \prime}(a)}{3}+\frac{R_{3, a, f}(h)}{h^{3}}-\frac{R_{3, a, f}(-h)}{h^{3}} .
\end{aligned}
$$

Since $\lim _{h \rightarrow 0} \frac{R_{3, a, f}(h)}{h^{3}}=\lim _{h \rightarrow 0} \frac{R_{3, a, f}(-h)}{h^{3}}=0$, we have

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)-2 h f^{\prime}(a)}{h^{3}}=\frac{f^{\prime \prime \prime}(a)}{3}
$$

