Math 10860: Honors Calculus II, Spring 2021 Homework 8

1. (a) Use Theorem 1 from Chapter 22 of Spivak (connecting continuity and limits of sequences) to find, for each fixed $a>0, \lim _{n \rightarrow \infty} a^{1 / n}$.
Solution: Note that $a^{1 / n}=e^{\frac{\ln (a)}{n}}$, and we also have that $\ln (a) / n \rightarrow 0$ as $n \rightarrow \infty$.
Thus, by the continuity of the exponential function, we have that $\lim _{n \rightarrow \infty} a^{1 / n}=1$.
(b) Prove a "squeeze theorem" for sequences:

Let $\left(a_{n}\right),\left(b_{n}\right)$ and $\left(c_{n}\right)$ be sequences with $\left(a_{n}\right),\left(c_{n}\right) \rightarrow L$. If eventually (for all $n>n_{0}$, for some finite n_{0}) we have $a_{n} \leq b_{n} \leq c_{n}$, then $\left(b_{n}\right) \rightarrow L$ also.
Solution: Let $\varepsilon>0$. Since $\left(a_{n}\right) \rightarrow L$, there exists a n_{a} such that $\left|a_{n}-L\right|<\varepsilon$ for $n>n_{a}$. Similarly, there exists a n_{c} such that $\left|c_{n}-L\right|<\varepsilon$ for $n>n_{c}$. Let $n_{b}=\max \left\{n_{0}, n_{a}, n_{c}\right\}$. If $n>n_{b}$, then

$$
-\varepsilon<a_{n}-L \leq b_{n}-L \leq c_{n}-L<\varepsilon
$$

and so we have that $\left|b_{n}-L\right|<\varepsilon$ for $n>n_{b}$.
(c) Use the results of parts (a) and (b) to compute

$$
\lim _{n \rightarrow \infty}\left(\frac{2 n^{2}-1}{3 n^{2}+n+2}\right)^{\frac{1}{n}}
$$

Solution Consider the sequence

$$
a_{n}=\frac{2 n^{2}-1}{3 n^{2}+n+2}
$$

We first show that this is an increasing sequence. Consider the analogous function

$$
f(x)=\frac{2 x^{2}-1}{3 x^{2}+x+2}, \quad f: \mathbb{R}_{>0} \rightarrow \mathbb{R}
$$

Note that its derivative is

$$
f^{\prime}(x)=\frac{18 x^{2}+126 x+9}{\left(9 x^{2}+3 x+6\right)^{2}}>0, \quad \forall x>0
$$

and so a_{n} is increasing because $f(n)=a_{n}$ for all natural numbers n.
Now, note that $a_{1}=1 / 6$, and via L'Hopital

$$
\lim _{n \rightarrow \infty} \frac{2 n^{2}-1}{3 n^{2}+n+2}=\frac{2}{3}
$$

Because a_{n} is increasing, this implies

$$
\frac{1}{6} \leq \frac{2 n^{2}-1}{3 n^{2}+n+2} \leq \frac{2}{3} \Longrightarrow\left(\frac{1}{6}\right)^{1 / n} \leq\left(\frac{2 n^{2}-1}{3 n^{2}+n+2}\right)^{1 / n} \leq\left(\frac{2}{3}\right)^{1 / n}
$$

By part a, we have that $(1 / 6)^{1 / n}$ and $(2 / 3)^{1 / n}$ go to 1 as $n \rightarrow \infty$, and so by part b, we have that

$$
\lim _{n \rightarrow \infty}\left(\frac{2 n^{2}-1}{3 n^{2}+n+2}\right)^{1 / n}=1
$$

2. Find the following limits:
(a) $\lim _{n \rightarrow \infty} \frac{n}{n+1}$. (For this one, you must use the definition of sequence limit).

Solution: We claim that this limit is 1 . We will now show this. Given $\varepsilon>0$, we need to find a n_{0} such that $n>n_{0}$ implies that $|n /(n+1)-1|<\varepsilon$. This is equivalent to $|-1 /(n+1)|<\varepsilon$, which is equivalent to $n>(1 / \varepsilon)-1$, and so we let $n_{0}=(1 / \varepsilon)-1$.
(b) $\lim _{n \rightarrow \infty} \sqrt[n]{n^{2}+n}$. (For this and the remaining parts, a soft argument is fine, meaning, you may freely use theorems proven in lectures and/or notes).
Solution: We claim that the limit is 1 . Note that we have

$$
\sqrt[n]{n^{2}+n}=e^{\left(\ln \left(n^{2}+n\right) / n\right)}
$$

and so by continuity of the exponential function, it suffices to show that $\ln \left(n^{2}+\right.$ $n) / n \rightarrow 0$ as $n \rightarrow \infty$. To show this, it suffices to show that $\ln \left(x^{2}+x\right) / x \rightarrow 0$ as $x \rightarrow \infty$, and we do this via L'Hopital

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(x^{2}+x\right)}{x}=\lim _{x \rightarrow \infty} \frac{2 x+1}{x^{2}+x}=0
$$

(c) $\lim _{n \rightarrow \infty}\left(\sqrt[8]{n^{2}+1}-\sqrt[4]{n+1}\right)$.

Solution: We claim the limit is 0 . First, note that

$$
\lim _{n \rightarrow \infty}\left(\sqrt[8]{n^{2}+1}-\sqrt[4]{n+1}\right)=-\lim _{n \rightarrow \infty}\left(\sqrt[4]{n+1}-\sqrt[8]{n^{2}+1}\right)
$$

and so it suffices to find the value of the right hand side. Note that $\sqrt[4]{n+1}=$ $(n+1)^{1 / 4}=\left(n^{2}+1+2 n\right)^{1 / 8}$. By mean value theorem, we have

$$
0 \leq\left(n^{2}+1+2 n\right)^{1 / 8}-\left(n^{2}+1\right)^{1 / 8}=\frac{1}{8} c_{n}^{-7 / 8} \cdot 2 n=\frac{n}{4} c_{n}^{-7 / 8}
$$

where $c_{n} \in\left(n^{2}+1, n^{2}+2 n+1\right)$. It follows that

$$
\frac{n}{4} c_{n}^{-7 / 8} \leq \frac{n}{4}\left(n^{2}\right)^{-7 / 8} \leq \frac{n}{4} n^{-7 / 4}=\frac{1}{4} n^{-3 / 4}
$$

and so by squeeze theorem, our result follows.
(d) $\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}-\frac{n+1}{n}\right)$.

Solution: We claim the limit is 0 . We have

$$
\frac{n}{n+1}-\frac{n+1}{n}=\frac{n^{2}-(n+1)^{2}}{n(n+1)}=\frac{-2 n+1}{n(n+1)} \rightarrow 0 \text { as } n \rightarrow \infty
$$

(e) $\lim _{n \rightarrow \infty} \frac{2^{n^{2}}}{n!}$.

Solution: We claim the limit is ∞. Note that $n!<n^{n}$ and so

$$
\frac{2^{n^{2}}}{n!}>\frac{2^{n^{2}}}{n^{n}}=2^{n^{2}} / 2^{n \log _{2}(n)}=2^{n^{2}-n \log _{2}(n)}
$$

Note that $n^{2}-n \log _{2}(n) \rightarrow \infty$ as $n \rightarrow \infty$, and so our result follows.
(f) $\lim _{n \rightarrow \infty} \frac{(-1)^{n} \sqrt{n} \sin \left(n^{n}\right)}{n+1}$.

Solution: We have that

$$
\frac{(-1)^{n+1} \sqrt{n}}{n+1} \leq \frac{(-1)^{n} \sqrt{n} \sin \left(n^{n}\right)}{n+1} \leq \frac{(-1)^{n} \sqrt{n}}{n+1}
$$

and so by squeeze theorem, our result follows.
3. A subsequence of a sequence

$$
\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

is a sequence of the form

$$
\left(a_{n_{1}}, a_{n_{2}}, a_{n_{3}}, \ldots\right)
$$

with $n_{1}<n_{2}<n_{3} \cdots$. In other words, it is a sequence obtained from another sequence by extracting an infinite subset of the elements of the original sequence, keeping the elements in the same order as they were in the original sequence.
(a) Consider the sequence

$$
\left(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \cdots\right) .
$$

For which numbers α is there a subsequence converging to α ?
Solution: We claim that there is a subsequence converging to α if and only if $0 \leq \alpha \leq 1$.
Naturally, if $a<0$ or $\alpha>1$ then there is no subsequence that goes to α. For $\alpha=0$. consider the subsequence $(1 / 2,1 / 3,1 / 4, \ldots)$. Similarly, for $\alpha=1$, consider the subsequence $(1 / 2,2 / 3,3 / 4, \ldots)$.
So consider $0<\alpha<1$. Note that the rationals are dense in $(0, \alpha)$ and so we can find a sequence of rationals $\left(x_{1}, x_{2}, \ldots\right)$ where $r_{i} \in(0, \alpha)$ for all i, and where $\left(r_{i}\right) \rightarrow \alpha$. We can actually explicitly do this by letting r_{1} be in $(0, \alpha), r_{2}$ in $(\alpha / 2, \alpha), r_{3}$ in $(3 \alpha / 4, \alpha)$, and so on.
Now, note that every rational in $(0,1)$ appears infinitely in the sequence defined in the question, and so r_{1} can be found in the sequence, and r_{2} can be found later, and r_{3} even later, and so on and so forth, and so we have thus constructed a subsequence that converges to α.
(b) Now consider the same sequence as in part (a), except remove all duplicated terms, so that it begins

$$
\left(\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{5}{6}, \frac{1}{7}, \cdots\right) .
$$

Now for which numbers α is there a subsequence converging to α ?

Solution: Deleting repeated values would not change the fact that the rationals are dense in the reals, and so the same argument above applies. So again, $\alpha \in[0,1]$.
4. (a) Prove that if $0<a<2$ then $a<\sqrt{2 a}<2$.

Solution: For positive a, we have the following chain of equivalences

$$
a<2 \Longleftrightarrow a^{2}<2 a \Longleftrightarrow a<\sqrt{2 a}
$$

and

$$
a<2 \Longleftrightarrow 2 a<4 \Longleftrightarrow \sqrt{2 a}<2
$$

(b) Prove that the sequence

$$
\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \sqrt{2 \sqrt{2 \sqrt{2 \sqrt{2}}}}, \ldots
$$

converges.
Solution: Rewrite this sequence as

$$
a_{1}=\sqrt{2}=2^{1 / 2}, \quad a_{n+1}=\sqrt{2 a_{n}}=2^{1-\frac{1}{2^{n}}}
$$

Note that $a_{n}<2$ for all n and so it is bounded. Also, note that we have

$$
\begin{aligned}
\frac{1}{2^{n}}>\frac{1}{2^{n+1}} & \\
& \Longrightarrow 1-\frac{1}{2^{n}}<1-\frac{1}{2^{n+1}} \\
& \Longrightarrow 2^{1-\frac{1}{2^{n}}}<2^{1-\frac{1}{2^{n+1}}} \\
& \Longleftrightarrow a_{n}<a_{n+1}
\end{aligned}
$$

and so since the sequence is bounded and increasing, then it must be convergent.
(c) Let a_{n} be the nth term of the above sequence, and let $\ell=\lim _{n \rightarrow \infty} a_{n}$. Carefully applying a theorem proved in lectures, find ℓ.
Solution: Recall that $a_{n}=2^{1-\frac{1}{2^{n}}}$. Note that $1-\frac{1}{2^{n}} \rightarrow 1$ as $n \rightarrow \infty$, and so $\lim _{n \rightarrow \infty} a_{n}=2^{1}=2$.
5. This question provides a useful estimate on $n!: n!\approx(n / e)^{n}$.
(a) Show that if $f:[1, \infty)$ is increasing then

$$
f(1)+\cdots+f(n-1)<\int_{1}^{n} f(x) d x<f(2)+\cdots+f(n) .
$$

Solution: Consider the interval $[i, i+1]$. Because f is an increasing function, then $\sup \{f(x): x \in[i, i+1]\}=f(i+1)$ and $\inf \{f(x): x \in[i, i+1]\}=f(i)$.

Using Homework 1, Question 5a, we have that

$$
\begin{aligned}
& f(i)<\int_{i}^{i+1}<f(i+1) \\
& \Longrightarrow \sum_{i=1}^{n-1} f(i)<\sum_{i=1}^{n-1} \int_{i}^{i+1}<f(i+1)<\sum_{i=1}^{n-1} f(i+1) \\
& \Longleftrightarrow f(1)+\cdots+f(n-1)<\int_{1}^{2} f(x) d x+\cdots+\int_{n-1}^{n} f(x) d x<f(2)+\cdots+f(n) \\
& \Longleftrightarrow f(1)+\cdots+f(n-1)<\int_{1}^{n} f(x) d x<f(2)+\cdots+f(n)
\end{aligned}
$$

(b) By taking $f=\log$ deduce that

$$
\frac{n^{n}}{e^{n-1}}<n!<\frac{(n+1)^{n+1}}{e^{n}}
$$

Solution: Note that $\int \ln (x) d x=x \ln (x)-x$ and so $\int_{1}^{n} \ln (x) d x=n \ln (n)-n+1$. We also see that $\ln (1)+\cdots+\ln (n-1)=\ln ((n-1)!)$ and $\ln (2)+\cdots+\ln (n)=\ln (n!)$.
Since \ln is an increasing function, using part a, we have the upper bound

$$
n \ln (n)-n+1 \leq \ln (n!) \Longrightarrow \frac{n^{n}}{e^{n-1}}<n!
$$

and similarly, performing an index change from n to $n+1$ gives us a lower bound of

$$
\ln (n!)<(n+1) \ln (n+1)-n \Longrightarrow n!<\frac{(n+1)^{n+1}}{e^{n}}
$$

(c) Deduce that ${ }^{1}$

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[n]{n!}}{n}=\frac{1}{e}
$$

Solution: From the lower bound in part b, we have that

$$
\frac{1}{e} \cdot e^{1 / n}>\frac{\sqrt[n]{n!}}{n}
$$

[^0]A better, and much more difficult to prove, bound on $n!$ is given by Stirling's formula:

$$
\lim _{n \rightarrow \infty} \frac{n!}{\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}}=1
$$

in other words, for all $\varepsilon>0$ there is n_{0} such that $n>n_{0}$ implies

$$
(1-\varepsilon) \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}<n!<(1+\varepsilon) \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} .
$$

From the upper bound, we have

$$
\frac{\sqrt[n]{n!}}{n}<\frac{1}{e} \cdot \sqrt[n]{n+1}\left(1+\frac{1}{n}\right)
$$

Because both $e^{1 / n}$ and $\sqrt[n]{n+1}\left(1+\frac{1}{n}\right)$ go to 1 as nto ∞, then our desired result follows by squeeze theorem.
6. The Harmonic number H_{n} is the number $H_{n}=\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$. This exercise gives a very useful estimate on H_{n}, namely $H_{n} \approx \log n$.
(a) Notice that $H_{1}=1, H_{2}=1+\frac{1}{2}$ and

$$
H_{4}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4} \geq 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}=1+\frac{2}{2} .
$$

Generalize this: prove that for all $k \geq 0, H_{2^{k}} \geq 1+\frac{k}{2}$ (and so $\left(H_{n}\right)_{n=1}^{\infty}$ diverges to $+\infty$).
Solution: We use induction. Consider the base cases $k=1$ and $k=2$. From the question we see that $H_{2^{1}}=1+\frac{1}{2}$ and $H_{4}=1+\frac{2}{2}$ and so the base cases hold. Now, suppose that $H_{2^{k-1}} \geq 1+\frac{k-1}{2}$. Consider $H^{2^{k}}$. We have that

$$
\begin{aligned}
H_{2^{k}} & =H_{2^{k-1}}+\frac{1}{2^{k-1}+1}+\frac{1}{2^{k-1}+2}+\cdots+\frac{1}{2^{k}} \\
& \geq H_{2^{k-1}}+\frac{1}{2^{k}}+\frac{1}{2^{k}}+\cdots+\frac{1}{2^{k}} \\
& \geq 1+\frac{k-1}{2}+\frac{1}{2} \\
& =1+\frac{k}{2}
\end{aligned}
$$

(b) Prove that for all natural numbers n,

$$
\frac{1}{n+1}<\log (n+1)-\log n<\frac{1}{n}
$$

Solution: By definition, we have that

$$
\ln \left(\frac{n+1}{n}\right)=\int_{1}^{\frac{n+1}{n}} \frac{1}{t} d t
$$

and we also have that

$$
1<t<\frac{n+1}{n} \Longrightarrow \frac{n}{n+1}<\frac{1}{t}<\frac{1}{n}
$$

and this gives us

$$
\frac{n}{n+1} \int_{1}^{\frac{n+1}{n}} d t<\int_{1}^{\frac{n+1}{n}} \frac{1}{t} d t<\frac{1}{n} \int_{1}^{\frac{n+1}{n}} d t
$$

Computing the definite integrals gives us

$$
\frac{1}{n+1}<\ln \left(\frac{n+1}{n}\right)<\frac{1}{n}
$$

(c) Deduce from part (b) that the sequence $\left(H_{n}-\log n\right)_{n=2}^{\infty}$ is decreasing and bounded below by 0 .
Solution: First we show that the sequence is decreasing. Note that

$$
H_{n+1}-\ln (n+1)<H_{n}-\ln (n)
$$

if and only if

$$
H_{n+1}-H_{n}=\frac{1}{n+1}<\ln (n+1)-\ln (n)
$$

which follows from part b.
Now we show that it is bounded below by 0 . We have that

$$
H_{n}=\sum_{k=1}^{n}>\int_{1}^{n+1} \frac{1}{t} d t=\ln (n+1)>\ln (n)
$$

where the inequality is valid because the sum is simply a left-hand endpoint Riemann sum for the integral, and $1 / t$ is a decreasing function.
(d) Explain why you can deduce that there is a number $\gamma \geq 0$ such that

$$
\lim _{n \rightarrow \infty}\left(H_{n}-\log n\right)=\gamma
$$

(This number is known as the Euler-Mascheroni constant, and is approximately 0.57721. It is not known whether γ is rational or irrational.)

Solution: By the Monotone Convergence Theorem (Theorem 2 in the textbook), because $H_{n}-\ln (n)$ is non-increasing and bounded below by 0 , then the sequence must converge to some value, and we can denote this value as γ, where $\gamma \geq 0$.

[^0]: ${ }^{1}$ Note that this only says that for large $n, \sqrt[n]{n!}$ is close to n / e; it does not say that for large n, n ! is close to $(n / e)^{n}$ - it is not. In fact, all we can get out of the bounds in part b$)$ is that

 $$
 e\left(\frac{n}{e}\right)^{n}<n!<e(n+1)\left(\frac{n}{e}\right)^{n} .
 $$

