Math 10860: Honors Calculus II, Spring 2021 Homework 9

1. Use the Bolzano-Weierstrass theorem (every bounded sequence has a convegent subsequence) to prove the first part of the Extreme Value Theorem: if $f:[a, b] \rightarrow \mathbb{R}$ is continuous, then there is M such that $f(x) \leq M$ for all $x \in[a, b]$. (Hint: Try a proof by contradiction.)
2. Decide whether the following sums converge. Explain your reasoning (i.e., which tests you are using, and why they apply.)

- $\sum_{n=1}^{\infty}(-1)^{n} \frac{\log n}{n}$.
- $\sum_{n=1}^{\infty} \frac{n^{2}}{n!}$.
- $\sum_{n=1}^{\infty} \frac{1}{(\log n)^{n}}$.
- $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}$.
- $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$.

3. (a) In the sum below, a is positive. Use the ratio test to decide for which values of a the sum converges, and for which values it diverges:

$$
\sum_{n=1}^{\infty} \frac{a^{n} n!}{n^{n}}
$$

(b) You should find that the ratio test gives no information at $a=e$ (if you didn't: redo part (a)!). When $a=e$, show that the series diverges, by using a result from the last homework.
(c) Decide when

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{a^{n} n!}
$$

converges, again using a result from the last homework when the ratio test fails.
4. Leibniz' alternating series test says that if $\left(a_{n}\right)$ is a non-increasing sequence of nonnegative numbers, and $\left(a_{n}\right) \rightarrow 0$ as $n \rightarrow 0$, then $\sum_{n=1}^{\infty}(-1)^{n} / n$ is finite.
Is the hypothesis "non-increasing" necessary, or is the conclusion still valid if we merely assume that non-negative a_{n} tends to 0 ?
5. (a) Prove that if $a_{n} \geq 0$ and $\left(a_{n}\right)$ is not summable (i.e., $\sum a_{n}$ diverges), then $\left(a_{n} /(1+\right.$ $\left.a_{n}\right)$) is not summable.
(b) Is the converse true? If $\left(a_{n} /\left(1+a_{n}\right)\right)$ is not summable (with $\left.a_{n}>0\right)$, must it always be the case that $\left(a_{n}\right)$ is not summable?
6. Define the 7-depleted harmonic number $H_{n}^{(7)}$ to be the sum of the reciprocals of the natural numbers from 1 to n, except those n that have a 7 in their decimal expansion. For example, $H_{8}^{(7)}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{8}$. (There is no standard name or notation for this number).
Does $\left(H_{n}^{(7)}\right)_{n=1}^{\infty}$ converge or diverge?
7. (a) Suppose that $\left(a_{n}\right)_{n=1}^{\infty}$ is nonincreasing (i.e. $a_{n+1} \geq a_{n}$ for all n), with $a_{n} \geq 0$, and that $\sum_{n=1}^{\infty} a_{n}$ is finite. The vanishing condition says that $\lim _{n \rightarrow \infty} a_{n}=0$. Prove something stronger: $\lim _{n \rightarrow \infty} n a_{n}=0$.
(b) For each $\alpha>0$, give an example of a sequence $\left(a_{n}\right)_{n=1}^{\infty}$ that is weakly decreasing, with $a_{n} \geq 0$, with $\sum_{n=1}^{\infty} a_{n}$ is finite, but with $\lim _{n \rightarrow \infty} n^{1+\alpha} a_{n}=+\infty$ (so, the result you proved in part (a) can't be improved upon).
(c) Is the hypothesis "nonincreasing" necessary?

