Math 10860: Honors Calculus II, Spring 2021 Homework 9

- 1. Use the Bolzano-Weierstrass theorem (every bounded sequence has a convegent subsequence) to prove the first part of the Extreme Value Theorem: if $f: [a, b] \to \mathbb{R}$ is continuous, then there is M such that $f(x) \leq M$ for all $x \in [a, b]$. (**Hint**: Try a proof by contradiction.)
- 2. Decide whether the following sums converge. Explain your reasoning (i.e., which tests you are using, and why they apply.)
 - $\sum_{n=1}^{\infty} (-1)^n \frac{\log n}{n}.$ • $\sum_{n=1}^{\infty} \frac{n^2}{n!}.$ • $\sum_{n=1}^{\infty} \frac{1}{(\log n)^n}.$ • $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}.$ • $\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}.$
- 3. (a) In the sum below, *a* is positive. Use the ratio test to decide for which values of *a* the sum converges, and for which values it diverges:

$$\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}.$$

- (b) You should find that the ratio test gives no information at a = e (if you didn't: redo part (a)!). When a = e, show that the series diverges, by using a result from the last homework.
- (c) Decide when

$$\sum_{n=1}^{\infty} \frac{n^n}{a^n n!}$$

converges, again using a result from the last homework when the ratio test fails.

4. Leibniz' alternating series test says that if (a_n) is a non-increasing sequence of non-negative numbers, and $(a_n) \to 0$ as $n \to 0$, then $\sum_{n=1}^{\infty} (-1)^n / n$ is finite.

Is the hypothesis "non-increasing" necessary, or is the conclusion still valid if we merely assume that non-negative a_n tends to 0?

- 5. (a) Prove that if $a_n \ge 0$ and (a_n) is not summable (i.e., $\sum a_n$ diverges), then $(a_n/(1 + a_n))$ is not summable.
 - (b) Is the converse true? If $(a_n/(1+a_n))$ is not summable (with $a_n > 0$), must it always be the case that (a_n) is not summable?

6. Define the 7-depleted harmonic number $H_n^{(7)}$ to be the sum of the reciprocals of the natural numbers from 1 to n, except those n that have a 7 in their decimal expansion. For example, $H_8^{(7)} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{8}$. (There is no standard name or notation for this number).

Does $(H_n^{(7)})_{n=1}^{\infty}$ converge or diverge?

- 7. (a) Suppose that $(a_n)_{n=1}^{\infty}$ is nonincreasing (i.e. $a_{n+1} \ge a_n$ for all n), with $a_n \ge 0$, and that $\sum_{n=1}^{\infty} a_n$ is finite. The vanishing condition says that $\lim_{n\to\infty} a_n = 0$. Prove something stronger: $\lim_{n\to\infty} na_n = 0$.
 - (b) For each $\alpha > 0$, give an example of a sequence $(a_n)_{n=1}^{\infty}$ that is weakly decreasing, with $a_n \ge 0$, with $\sum_{n=1}^{\infty} a_n$ is finite, but with $\lim_{n\to\infty} n^{1+\alpha}a_n = +\infty$ (so, the result you proved in part (a) can't be improved upon).
 - (c) Is the hypothesis "nonincreasing" necessary?