Homework 1 Key

12.2.1) (a) Since $1=3$, we have $x^{3}+x^{2}+x+1=x^{3}+3 x^{2}+3 x+1=(x+1)^{3}$, and $x+1$ is irreducible in $\mathbb{F}_{2}[x]$.
(b) Since $-3=2$, we have $x^{2}-3 x-3=x^{2}-3 x+2=(x+3)(x-1)=$ $(x-2)(x-1)$, and $x-2, x-1$ are irreducible in $\mathbb{F}_{5}[x]$.
(c) Notice that $x^{2}+1$ is a polynomial of degree 2 , so if it is reducible in $\mathbb{F}_{7}[x]$, it must be of the form $(x-a)(x-b)$ for $a, b \in \mathbb{F}_{7}$. In particular, $x^{2}+1$ must have a root in \mathbb{F}_{7}. However, testing each possibility,

- $0^{2}+1=1 \neq 0$
- $1^{2}+1=2 \neq 0$
- $2^{2}+1=5 \neq 0$
- $3^{2}+1=10=3 \neq 0$
- $4^{2}+1=17=3 \neq 0$
- $5^{2}+1=26=5 \neq 0$
- $6^{2}+1=37=2 \neq 0$

Since none of these are $0, x^{2}+1$ is irreducible in $\mathbb{F}_{7}[x]$.
12.2.4) Let f_{1}, \ldots, f_{k} be monic irreducible polynomials in $F[x]$ for a field F. We can assume that $k \geq 2$, because in any field F, x and $x+1$ are distinct monic irreducible polynomials. Consider the monic polynomial

$$
f:=f_{1} \cdots f_{k}+1
$$

Notice that f has degree $\operatorname{deg} f_{1}+\operatorname{deg} f_{2}+\cdots+\operatorname{deg} f_{k}$, which is strictly greater than $\operatorname{deg} f_{i}$ for any i (this is true since constant polynomials over a field are either 0 or are units, so are not irreducible). Thus f is distinct from each f_{i}. Assume that $f_{i} \mid f$ for some i. Then $f=f_{i} g$ for some $g \in F[x]$, so

$$
f_{i}\left(g-f_{1} \cdots f_{i-1} f_{i+1} \cdots f_{k}\right)=1
$$

Thus f_{i} is a unit, a contradiction, so $f_{i} \nmid f$ for each i. Since $F[x]$ is a UFD, f must have some irreducible factor f_{k+1} that is distinct from f_{i} for $1 \leq i \leq k$, and by multiplying by a unit we can assume f_{k+1} is monic. We conclude that there are infinitely many monic irreducible polynomials in $F[x]$.
12.2.6) (a) Every element in $\mathbb{Z}[\omega]$ is of the form $a+b \omega$ because of the relation $\omega^{2}=-\omega-1$. Let $\sigma: \mathbb{Z}[\omega] \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ be given by $\sigma(z)=|z|^{2}$, which is nonnegative. Then for any nonzero $z=a+b \omega=\left(a-\frac{b}{2}\right)+\frac{\sqrt{3}}{2} b i$, we have

$$
\sigma(z)=a^{2}-a b+\frac{b^{2}}{4}+\frac{3 b^{2}}{4}=a^{2}-a b+b^{2}
$$

Now let $\alpha, \beta \in \mathbb{Z}[\omega]$ with $\beta \neq 0$, so $\alpha=\alpha_{1}+\alpha_{2} \omega$ and $\beta=\beta_{1}+\beta_{2} \omega$ for integers α_{i}, β_{i}. Working in $\mathbb{Q}[\omega]$, we have

$$
\begin{aligned}
\frac{\alpha}{\beta} & =\frac{\alpha_{1}+\alpha_{2} \omega}{\beta_{1}+\beta_{2} \omega} \\
& =\frac{\alpha_{1}+\alpha_{2} \omega}{\beta_{1}+\beta_{2} \omega} \cdot \frac{\beta_{1}+\beta_{2} \omega^{2}}{\beta_{1}+\beta_{2} \omega^{2}} \\
& =\frac{\alpha_{1} \beta_{1}+\alpha_{2} \beta_{1} \omega+\alpha_{1} \beta_{2} \omega^{2}+\alpha_{2} \beta_{2} \omega^{3}}{\beta_{1}^{2}+\beta_{1} \beta_{2} \omega+\beta_{1} \beta_{2} \omega^{2}+\beta_{2}^{2} \omega^{3}} \\
& =\frac{\left(\alpha_{1} \beta_{1}-\alpha_{1} \beta_{2}+\alpha_{2} \beta_{2}\right)+\left(\alpha_{2} \beta_{1}-\alpha_{1} \beta_{2}\right) \omega}{\beta_{1}^{2}-\beta_{1} \beta_{2}+\beta_{2}^{2}} \\
& =s_{1}+s_{2} \omega
\end{aligned}
$$

for rational numbers s_{1}, s_{2}. Pick integers x, y closest to s_{1}, s_{2} respectively so $\left|x-s_{1}\right| \leq \frac{1}{2}$ and $\left|y-s_{2}\right| \leq \frac{1}{2}$. Let $q=x+y \omega$. Let $r=\alpha-\beta q$, showing that there $q, r \in \mathbb{Z}[\omega]$ with $\alpha=\beta q+r$. For $r \neq 0$, we have

$$
\begin{aligned}
\sigma(r) & =|r|^{2} \\
& =|\beta|^{2} \cdot\left|\frac{\alpha}{\beta}-q\right|^{2} \\
& =\mid\left(s_{1}+s_{2} \omega-\left.(x+y \omega)\right|^{2} \cdot \sigma(\beta)\right. \\
& =\left|\left(s_{1}-x\right)+\left(s_{2}-y\right) \omega\right|^{2} \cdot \sigma(\beta) \\
& =\left(\left(s_{1}-x\right)^{2}-\left(s_{1}-x\right)\left(s_{2}-y\right)+\left(s_{2}-y\right)^{2}\right) \cdot \sigma(\beta) \\
& \leq\left(\left(s_{1}-x\right)^{2}+\left|\left(s_{1}-x\right)\right| \cdot\left|\left(s_{2}-y\right)\right|+\left(s_{2}-y\right)^{2}\right) \cdot \sigma(\beta) \\
& \leq \frac{3}{4} \sigma(\beta) \\
& <\sigma(\beta)
\end{aligned}
$$

We conclude that $\mathbb{Z}[\omega]$ is a Euclidean domain.
(b) Every element in $\mathbb{Z}[\sqrt{-2}]$ is of the form $a+b \sqrt{-2}$ for integers a, b. Let $\sigma: \mathbb{Z}[\sqrt{-2}] \backslash\{0\} \rightarrow \mathbb{Z}_{\geq 0}$ be given by $\sigma(z)=|z|^{2}$, which is nonnegative. Then for any nonzero $z=a+b \sqrt{-2}$ we have

$$
\sigma(z)=a^{2}+2 b^{2}
$$

Now let $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$ with $\beta \neq 0$, so $\alpha=\alpha_{1}+\alpha_{2} \omega$ and $\beta=\beta_{1}+\beta_{2} \omega$ for integers α_{i}, β_{i}. Working in $\mathbb{Q}[\sqrt{-2}]$, just as above we can write

$$
\frac{\alpha}{\beta}=s_{1}+s_{2} \sqrt{-2}
$$

for rational numbers s_{1}, s_{2}. Pick integers x, y closest to s_{1}, s_{2} respectively so $\left|x-s_{1}\right| \leq \frac{1}{2}$ and $\left|y-s_{2}\right| \leq \frac{1}{2}$. Let $q=x+y \sqrt{-2}$. Let $r=\alpha-\beta q$, showing that there $q, r \in \mathbb{Z}[\sqrt{-2}]$ with $\alpha=\beta q+r$. For $r \neq 0$, we have

$$
\begin{aligned}
\sigma(r) & =|r|^{2} \\
& =|\beta|^{2} \cdot\left|\frac{\alpha}{\beta}-q\right|^{2} \\
& =\mid\left(s_{1}+s_{2} \sqrt{-2}-\left.(x+y \sqrt{-2})\right|^{2} \cdot \sigma(\beta)\right. \\
& =\left|\left(s_{1}-x\right)+\left(s_{2}-y\right) \sqrt{-2}\right|^{2} \cdot \sigma(\beta) \\
& =\left(\left(s_{1}-x\right)^{2}+2\left(s_{2}-y\right)^{2}\right) \cdot \sigma(\beta) \\
& \leq \frac{3}{4} \sigma(\beta) \\
& <\sigma(\beta)
\end{aligned}
$$

We conclude that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.
12.2.9) Let J be an ideal of $F\left[x, x^{-1}\right]$. Then $J \cap F[x]$ is an ideal in $F[x]$. Since $F[x]$ is a PID, there is some $p \in F[x]$ such that $(p)=J \cap F[x]$ in $F[x]$. I claim that $(p)=J$ in $F\left[x, x^{-1}\right]$:

- Since $p \in J$, we have $(p) \subseteq J$.
- We now show that $J \subseteq(p)$: Let $f \in J$, and choose $n \in \mathbb{N}$ large enough so that $x^{n} f \in F[x]$. Since J is an ideal, $x^{n} f \in J \cap F[x]=(p)$ as an ideal in $F[x]$. Thus there is some $g \in F[x]$ such that $x^{n} f=g p$, so $f=\left(x^{-n} g\right) p$, implying that $f \in(p)$ as an ideal in $F\left[x, x^{-1}\right]$. Thus $J \subseteq(p)$.

We conclude that $J=(p)$, so $F\left[x, x^{-1}\right]$ is a PID.
12.2.10) It suffices to show that $\mathbb{R}[[t]]$ is a PID. Let J be an ideal of $\mathbb{R}[[t]]$. If $J=0$, then clearly J is principal, so assume $J \neq 0$. Let $p \in J$ be a formal power series with smallest degree n as low as possible, meaning that $p=\sum_{i=n}^{\infty} p_{i} t^{i}$, with $p_{n} \neq 0$, and if $q=\sum_{i=n^{\prime}}^{\infty} q_{i} t^{i}$ with $q_{n^{\prime}} \neq 0$, then $n^{\prime} \geq n$. We have

$$
p=t^{n}\left(a_{n}+a_{n+1} t+\cdots\right)
$$

so $\frac{p}{t^{n}}$ is a unit since \mathbb{R} is a field and the units in $\mathbb{R}[[t]]$ are precisely the power series with nonzero constant terms. I claim that $(p)=J$:

- Clearly $(p) \subseteq J$ since $p \in J$.
- Let $f \in J$. Then $f=t^{n} g$ for some $g \in \mathbb{R}[[t]]$ by the minimality of n, so

$$
f=t^{n} g=t^{n}\left(\frac{p}{t^{n}}\right)\left(\frac{p}{t^{n}}\right)^{-1} g=p \cdot\left(\left(\frac{p}{t^{n}}\right)^{-1} g\right)
$$

which is well-defined since $\frac{p}{t^{n}}$ is a unit. Thus $f \in(p)$, so $J \subseteq(p)$.
We conclude that $J=(p)$, so $\mathbb{R}[[t]]$ is a PID, and thus is a UFD.

