
Homework 1 Key

12.2.1) (a) Since 1 = 3, we have x3 + x2 + x+1 = x3 +3x2 +3x+1 = (x+1)3,
and x+ 1 is irreducible in F2[x].

(b) Since −3 = 2, we have x2 − 3x− 3 = x2 − 3x+ 2 = (x+ 3)(x− 1) =
(x− 2)(x− 1), and x− 2, x− 1 are irreducible in F5[x].

(c) Notice that x2 + 1 is a polynomial of degree 2, so if it is reducible in
F7[x], it must be of the form (x−a)(x−b) for a, b ∈ F7. In particular,
x2 + 1 must have a root in F7. However, testing each possibility,

• 02 + 1 = 1 ̸= 0

• 12 + 1 = 2 ̸= 0

• 22 + 1 = 5 ̸= 0

• 32 + 1 = 10 = 3 ̸= 0

• 42 + 1 = 17 = 3 ̸= 0

• 52 + 1 = 26 = 5 ̸= 0

• 62 + 1 = 37 = 2 ̸= 0

Since none of these are 0, x2 + 1 is irreducible in F7[x].
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12.2.4) Let f1, . . . , fk be monic irreducible polynomials in F [x] for a field F . We
can assume that k ≥ 2, because in any field F , x and x + 1 are distinct
monic irreducible polynomials. Consider the monic polynomial

f := f1 · · · fk + 1.

Notice that f has degree deg f1 + deg f2 + · · · + deg fk, which is strictly
greater than deg fi for any i (this is true since constant polynomials over
a field are either 0 or are units, so are not irreducible). Thus f is distinct
from each fi. Assume that fi | f for some i. Then f = fig for some
g ∈ F [x], so

fi (g − f1 · · · fi−1fi+1 · · · fk) = 1.

Thus fi is a unit, a contradiction, so fi ∤ f for each i. Since F [x] is a
UFD, f must have some irreducible factor fk+1 that is distinct from fi
for 1 ≤ i ≤ k, and by multiplying by a unit we can assume fk+1 is monic.
We conclude that there are infinitely many monic irreducible polynomials
in F [x].
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12.2.6) (a) Every element in Z[ω] is of the form a + bω because of the relation
ω2 = −ω−1. Let σ : Z[ω]\{0} → Z≥0 be given by σ(z) = |z|2, which
is nonnegative. Then for any nonzero z = a+ bω =

(
a− b

2

)
+

√
3
2 bi,

we have

σ(z) = a2 − ab+
b2

4
+

3b2

4
= a2 − ab+ b2.

Now let α, β ∈ Z[ω] with β ̸= 0, so α = α1 + α2ω and β = β1 + β2ω
for integers αi, βi. Working in Q[ω], we have

α

β
=

α1 + α2ω

β1 + β2ω

=
α1 + α2ω

β1 + β2ω
· β1 + β2ω

2

β1 + β2ω2

=
α1β1 + α2β1ω + α1β2ω

2 + α2β2ω
3

β2
1 + β1β2ω + β1β2ω2 + β2

2ω
3

=
(α1β1 − α1β2 + α2β2) + (α2β1 − α1β2)ω

β2
1 − β1β2 + β2

2

= s1 + s2ω

for rational numbers s1, s2. Pick integers x, y closest to s1, s2 respec-
tively so |x−s1| ≤ 1

2 and |y−s2| ≤ 1
2 . Let q = x+yω. Let r = α−βq,

showing that there q, r ∈ Z[ω] with α = βq + r. For r ̸= 0, we have

σ(r) = |r|2

= |β|2 ·
∣∣∣∣αβ − q

∣∣∣∣2
= |(s1 + s2ω − (x+ yω)|2 · σ(β)

= |(s1 − x) + (s2 − y)ω|2 · σ(β)
=

(
(s1 − x)2 − (s1 − x)(s2 − y) + (s2 − y)2

)
· σ(β)

≤
(
(s1 − x)2 + |(s1 − x)| · |(s2 − y)|+ (s2 − y)2

)
· σ(β)

≤ 3

4
σ(β)

< σ(β).

We conclude that Z[ω] is a Euclidean domain.

(b) Every element in Z[
√
−2] is of the form a + b

√
−2 for integers a, b.

Let σ : Z[
√
−2] \ {0} → Z≥0 be given by σ(z) = |z|2, which is

nonnegative. Then for any nonzero z = a+ b
√
−2 we have

σ(z) = a2 + 2b2.
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Now let α, β ∈ Z[
√
−2] with β ̸= 0, so α = α1+α2ω and β = β1+β2ω

for integers αi, βi. Working in Q[
√
−2], just as above we can write

α

β
= s1 + s2

√
−2

for rational numbers s1, s2. Pick integers x, y closest to s1, s2 respec-
tively so |x − s1| ≤ 1

2 and |y − s2| ≤ 1
2 . Let q = x + y

√
−2. Let

r = α − βq, showing that there q, r ∈ Z[
√
−2] with α = βq + r. For

r ̸= 0, we have

σ(r) = |r|2

= |β|2 ·
∣∣∣∣αβ − q

∣∣∣∣2
=

∣∣(s1 + s2
√
−2−

(
x+ y

√
−2

)∣∣2 · σ(β)
=

∣∣(s1 − x) + (s2 − y)
√
−2

∣∣2 · σ(β)
=

(
(s1 − x)2 + 2(s2 − y)2

)
· σ(β)

≤ 3

4
σ(β)

< σ(β).

We conclude that Z[
√
−2] is a Euclidean domain.
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12.2.9) Let J be an ideal of F [x, x−1]. Then J ∩ F [x] is an ideal in F [x]. Since
F [x] is a PID, there is some p ∈ F [x] such that (p) = J ∩ F [x] in F [x]. I
claim that (p) = J in F [x, x−1]:

• Since p ∈ J , we have (p) ⊆ J .

• We now show that J ⊆ (p): Let f ∈ J , and choose n ∈ N large
enough so that xnf ∈ F [x]. Since J is an ideal, xnf ∈ J ∩F [x] = (p)
as an ideal in F [x]. Thus there is some g ∈ F [x] such that xnf = gp,
so f = (x−ng)p, implying that f ∈ (p) as an ideal in F [x, x−1]. Thus
J ⊆ (p).

We conclude that J = (p), so F [x, x−1] is a PID.
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12.2.10) It suffices to show that R[[t]] is a PID. Let J be an ideal of R[[t]]. If
J = 0, then clearly J is principal, so assume J ̸= 0. Let p ∈ J be a
formal power series with smallest degree n as low as possible, meaning
that p =

∑∞
i=n pit

i, with pn ̸= 0, and if q =
∑∞

i=n′ qit
i with qn′ ̸= 0, then

n′ ≥ n. We have

p = tn(an + an+1t+ · · · )

so p
tn is a unit since R is a field and the units in R[[t]] are precisely the

power series with nonzero constant terms. I claim that (p) = J :

• Clearly (p) ⊆ J since p ∈ J .

• Let f ∈ J . Then f = tng for some g ∈ R[[t]] by the minimality of n,
so

f = tng = tn
( p

tn

)( p

tn

)−1

g = p ·
(( p

tn

)−1

g

)
,

which is well-defined since p
tn is a unit. Thus f ∈ (p), so J ⊆ (p).

We conclude that J = (p), so R[[t]] is a PID, and thus is a UFD.
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