Homework 1 Key

- 12.2.1) (a) Since 1 = 3, we have $x^3 + x^2 + x + 1 = x^3 + 3x^2 + 3x + 1 = (x + 1)^3$, and x + 1 is irreducible in $\mathbb{F}_2[x]$.
 - (b) Since -3 = 2, we have $x^2 3x 3 = x^2 3x + 2 = (x+3)(x-1) = (x-2)(x-1)$, and x-2, x-1 are irreducible in $\mathbb{F}_5[x]$.
 - (c) Notice that $x^2 + 1$ is a polynomial of degree 2, so if it is reducible in $\mathbb{F}_7[x]$, it must be of the form (x-a)(x-b) for $a, b \in \mathbb{F}_7$. In particular, $x^2 + 1$ must have a root in \mathbb{F}_7 . However, testing each possibility,
 - $0^2 + 1 = 1 \neq 0$
 - $1^2 + 1 = 2 \neq 0$
 - $2^2 + 1 = 5 \neq 0$
 - $3^2 + 1 = 10 = 3 \neq 0$
 - $4^2 + 1 = 17 = 3 \neq 0$
 - $5^2 + 1 = 26 = 5 \neq 0$
 - $6^2 + 1 = 37 = 2 \neq 0$

Since none of these are 0, $x^2 + 1$ is irreducible in $\mathbb{F}_7[x]$.

12.2.4) Let f_1, \ldots, f_k be monic irreducible polynomials in F[x] for a field F. We can assume that $k \ge 2$, because in any field F, x and x + 1 are distinct monic irreducible polynomials. Consider the monic polynomial

$$f := f_1 \cdots f_k + 1$$

Notice that f has degree deg $f_1 + \text{deg } f_2 + \cdots + \text{deg } f_k$, which is strictly greater than deg f_i for any i (this is true since constant polynomials over a field are either 0 or are units, so are not irreducible). Thus f is distinct from each f_i . Assume that $f_i \mid f$ for some i. Then $f = f_i g$ for some $g \in F[x]$, so

$$f_i \left(g - f_1 \cdots f_{i-1} f_{i+1} \cdots f_k \right) = 1.$$

Thus f_i is a unit, a contradiction, so $f_i \nmid f$ for each *i*. Since F[x] is a UFD, f must have some irreducible factor f_{k+1} that is distinct from f_i for $1 \leq i \leq k$, and by multiplying by a unit we can assume f_{k+1} is monic. We conclude that there are infinitely many monic irreducible polynomials in F[x].

12.2.6) (a) Every element in $\mathbb{Z}[\omega]$ is of the form $a + b\omega$ because of the relation $\omega^2 = -\omega - 1$. Let $\sigma : \mathbb{Z}[\omega] \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ be given by $\sigma(z) = |z|^2$, which is nonnegative. Then for any nonzero $z = a + b\omega = (a - \frac{b}{2}) + \frac{\sqrt{3}}{2}bi$, we have

$$\sigma(z) = a^2 - ab + \frac{b^2}{4} + \frac{3b^2}{4} = a^2 - ab + b^2.$$

Now let $\alpha, \beta \in \mathbb{Z}[\omega]$ with $\beta \neq 0$, so $\alpha = \alpha_1 + \alpha_2 \omega$ and $\beta = \beta_1 + \beta_2 \omega$ for integers α_i, β_i . Working in $\mathbb{Q}[\omega]$, we have

$$\begin{aligned} \frac{\alpha}{\beta} &= \frac{\alpha_1 + \alpha_2 \omega}{\beta_1 + \beta_2 \omega} \\ &= \frac{\alpha_1 + \alpha_2 \omega}{\beta_1 + \beta_2 \omega} \cdot \frac{\beta_1 + \beta_2 \omega^2}{\beta_1 + \beta_2 \omega^2} \\ &= \frac{\alpha_1 \beta_1 + \alpha_2 \beta_1 \omega + \alpha_1 \beta_2 \omega^2 + \alpha_2 \beta_2 \omega^3}{\beta_1^2 + \beta_1 \beta_2 \omega + \beta_1 \beta_2 \omega^2 + \beta_2^2 \omega^3} \\ &= \frac{(\alpha_1 \beta_1 - \alpha_1 \beta_2 + \alpha_2 \beta_2) + (\alpha_2 \beta_1 - \alpha_1 \beta_2) \omega}{\beta_1^2 - \beta_1 \beta_2 + \beta_2^2} \\ &= s_1 + s_2 \omega \end{aligned}$$

for rational numbers s_1, s_2 . Pick integers x, y closest to s_1, s_2 respectively so $|x-s_1| \leq \frac{1}{2}$ and $|y-s_2| \leq \frac{1}{2}$. Let $q = x+y\omega$. Let $r = \alpha - \beta q$, showing that there $q, r \in \mathbb{Z}[\omega]$ with $\alpha = \beta q + r$. For $r \neq 0$, we have

$$\begin{split} \sigma(r) &= |r|^2 \\ &= |\beta|^2 \cdot \left| \frac{\alpha}{\beta} - q \right|^2 \\ &= |(s_1 + s_2\omega - (x + y\omega)|^2 \cdot \sigma(\beta) \\ &= |(s_1 - x) + (s_2 - y)\omega|^2 \cdot \sigma(\beta) \\ &= ((s_1 - x)^2 - (s_1 - x)(s_2 - y) + (s_2 - y)^2) \cdot \sigma(\beta) \\ &\leq ((s_1 - x)^2 + |(s_1 - x)| \cdot |(s_2 - y)| + (s_2 - y)^2) \cdot \sigma(\beta) \\ &\leq \frac{3}{4}\sigma(\beta) \\ &< \sigma(\beta). \end{split}$$

We conclude that $\mathbb{Z}[\omega]$ is a Euclidean domain.

(b) Every element in $\mathbb{Z}[\sqrt{-2}]$ is of the form $a + b\sqrt{-2}$ for integers a, b. Let $\sigma : \mathbb{Z}[\sqrt{-2}] \setminus \{0\} \to \mathbb{Z}_{\geq 0}$ be given by $\sigma(z) = |z|^2$, which is nonnegative. Then for any nonzero $z = a + b\sqrt{-2}$ we have

$$\sigma(z) = a^2 + 2b^2.$$

Now let $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$ with $\beta \neq 0$, so $\alpha = \alpha_1 + \alpha_2 \omega$ and $\beta = \beta_1 + \beta_2 \omega$ for integers α_i, β_i . Working in $\mathbb{Q}[\sqrt{-2}]$, just as above we can write

$$\frac{\alpha}{\beta} = s_1 + s_2 \sqrt{-2}$$

for rational numbers s_1, s_2 . Pick integers x, y closest to s_1, s_2 respectively so $|x - s_1| \leq \frac{1}{2}$ and $|y - s_2| \leq \frac{1}{2}$. Let $q = x + y\sqrt{-2}$. Let $r = \alpha - \beta q$, showing that there $q, r \in \mathbb{Z}[\sqrt{-2}]$ with $\alpha = \beta q + r$. For $r \neq 0$, we have

$$\begin{aligned} \sigma(r) &= |r|^2 \\ &= |\beta|^2 \cdot \left|\frac{\alpha}{\beta} - q\right|^2 \\ &= \left|(s_1 + s_2\sqrt{-2} - (x + y\sqrt{-2})\right|^2 \cdot \sigma(\beta) \\ &= \left|(s_1 - x) + (s_2 - y)\sqrt{-2}\right|^2 \cdot \sigma(\beta) \\ &= \left((s_1 - x)^2 + 2(s_2 - y)^2\right) \cdot \sigma(\beta) \\ &\leq \frac{3}{4}\sigma(\beta) \\ &< \sigma(\beta). \end{aligned}$$

We conclude that $\mathbb{Z}[\sqrt{-2}]$ is a Euclidean domain.

- 12.2.9) Let J be an ideal of $F[x, x^{-1}]$. Then $J \cap F[x]$ is an ideal in F[x]. Since F[x] is a PID, there is some $p \in F[x]$ such that $(p) = J \cap F[x]$ in F[x]. I claim that (p) = J in $F[x, x^{-1}]$:
 - Since $p \in J$, we have $(p) \subseteq J$.
 - We now show that $J \subseteq (p)$: Let $f \in J$, and choose $n \in \mathbb{N}$ large enough so that $x^n f \in F[x]$. Since J is an ideal, $x^n f \in J \cap F[x] = (p)$ as an ideal in F[x]. Thus there is some $g \in F[x]$ such that $x^n f = gp$, so $f = (x^{-n}g)p$, implying that $f \in (p)$ as an ideal in $F[x, x^{-1}]$. Thus $J \subseteq (p)$.

We conclude that J = (p), so $F[x, x^{-1}]$ is a PID.

12.2.10) It suffices to show that $\mathbb{R}[[t]]$ is a PID. Let J be an ideal of $\mathbb{R}[[t]]$. If J = 0, then clearly J is principal, so assume $J \neq 0$. Let $p \in J$ be a formal power series with smallest degree n as low as possible, meaning that $p = \sum_{i=n}^{\infty} p_i t^i$, with $p_n \neq 0$, and if $q = \sum_{i=n'}^{\infty} q_i t^i$ with $q_{n'} \neq 0$, then $n' \geq n$. We have

$$p = t^n (a_n + a_{n+1}t + \cdots)$$

so $\frac{p}{t^n}$ is a unit since \mathbb{R} is a field and the units in $\mathbb{R}[[t]]$ are precisely the power series with nonzero constant terms. I claim that (p) = J:

- Clearly $(p) \subseteq J$ since $p \in J$.
- Let $f \in J$. Then $f = t^n g$ for some $g \in \mathbb{R}[[t]]$ by the minimality of n, so

$$f = t^n g = t^n \left(\frac{p}{t^n}\right) \left(\frac{p}{t^n}\right)^{-1} g = p \cdot \left(\left(\frac{p}{t^n}\right)^{-1} g\right),$$

which is well-defined since $\frac{p}{t^n}$ is a unit. Thus $f \in (p)$, so $J \subseteq (p)$.

We conclude that J = (p), so $\mathbb{R}[[t]]$ is a PID, and thus is a UFD.