Homework 2 Key

12.3.1) (a) First notice that $1+\sqrt{2}$ is a root of the polynomial $x^{2}-2 x-1$, so $\left(x^{2}-2 x-1\right) \subseteq \operatorname{ker} \varphi$. To see the reverse inclusion, suppose that $f(x) \in \operatorname{ker} \varphi$. Since this polynomial is monic, we can find polynomials $q(x), r(x) \in \mathbb{Z}[x]$ with $\operatorname{deg} r(x)<\operatorname{deg}\left(x^{2}-2 x-1\right)=2$ such that

$$
f(x)=q(x)\left(x^{2}-2 x-1\right)+r(x) .
$$

Plugging in $1+\sqrt{2}$, we see that $r(1+\sqrt{2})=0$. Since $r \in \mathbb{Z}[x]$ must be linear or constant and since $1+\sqrt{2}$ is irrational, we get that r is the constant polynomial 0 . Thus $f(x)=q(x)\left(x^{2}-2 x-1\right)$, so by definition, $f \in\left(x^{2}-2 x-1\right)$. We conclude that $\operatorname{ker} \varphi$ is a principal ideal generated by $x^{2}-2 x-1$.
(b) First notice that $\frac{1}{2}+\sqrt{2}$ is a root of the polynomial $4 x^{2}-4 x-7$, so $\left(4 x^{2}-4 x-7\right) \subseteq \operatorname{ker} \varphi$. Now let $f \in \operatorname{ker} \varphi$. Since $\mathbb{Q}[x]$ is a Euclidean domain, viewing f as a polynomial with rational coefficients, we can find $q(x), r(x) \in \mathbb{Q}[x]$ such that r has degree 0 or 1 , and

$$
f(x)=q(x)\left(4 x^{2}-4 x-7\right)+r(x)
$$

Plugging in $\frac{1}{2}+\sqrt{2}$, we see that $r\left(\frac{1}{2}+\sqrt{2}\right)=0$, and by the same reasoning as above, r is identically 0 . Then $f(x)=q(x)\left(4 x^{2}-4 x-7\right)$. Since $4 x^{2}-4 x-7$ is a primitive polynomial that divides f in $\mathbb{Q}[x]$, $q(x)$ is actually in $\mathbb{Z}[x]$. We conclude that $\operatorname{ker} \varphi$ is a principal ideal generated by $4 x^{2}-4 x-7$.
12.3.2 \Longrightarrow Assume two integer polynomials f, g are relatively prime elements of $\mathbb{Q}[x]$. Then there are $a, b \in \mathbb{Q}[x]$ such that $a f+b g=1$. Multiply by some integer N to clear the denominators of the coefficients of a and b to get $(N a) f+(N b) g=N$. Then $N a, N b \in \mathbb{Z}[x]$, so $N \in(f, g)$.
\Longleftarrow Assume that f, g are integer polynomials such that the ideal $(f, g) \subseteq$ $\mathbb{Z}[x]$ contains an integer N. Then $N=a f+b g$ for some integer polynomials a, b. Dividing by N, we get $\frac{a}{N} f+\frac{b}{N} g=1$, where $\frac{a}{N}, \frac{b}{N} \in$ $\mathbb{Q}[x]$. Thus f, g are relatively prime elements of $\mathbb{Q}[x]$.
12.3.4) Assume $x y-z w=f g$ for some $f, g \in \mathbb{C}[x, y, z, w]$. Then without loss of generality, f must have x-degree 1 and g has x-degree 0 , so $f=a x+b$ for $a, b \in \mathbb{C}[y, z, w]$ and $g \in \mathbb{C}[y, z, w]$. We then get

$$
x y-z w=a g x+b g
$$

so $a g=y$ and $b g=-z w$, forcing one of a, g to have y-degree 1 and the other to have y-degree 0 . If g has y-degree 1 , then $b g$ has y-degree at least 1 , a contradiction, so g has y-degree 0 . Similarly, g has z-degree and w-degree 0 , so g is a nonzero constant in \mathbb{C}, and thus is a unit. We conclude that $x y-z w$ is irreducible in $\mathbb{C}[x, y, z, w]$.
12.3.5) (a) It is clear that if $f(x, y) \in \mathbb{C}[x, y]$, then $p(t)=f\left(t^{2}, t^{3}\right)=\psi(f)$ is a polynomial with $\frac{d p}{d t}(0)=0$, as the coefficient of t in p is 0 .

Now assume that $p(t)$ is a polynomial with $\frac{d p}{d t}(0)=0$. Let $p(t)=$ $p_{0}+p_{2} t^{2}+p_{3} t^{3}+\cdots+p_{k} t^{k}$, where we have not written $p_{1} t$ since $p_{1}=\frac{d p}{d t}(0)=0$. Construct

$$
f=\sum a_{i j} x^{i} y^{j} \in \mathbb{C}[x, y]
$$

as follows: Let $a_{00}=p_{0}$. For $2 \leq \ell \leq k$, let $a_{i j}=p_{\ell}$ precisely when $2 i+3 j=\ell$ for i, j nonnegative and i as small as possible. We cannot find such a pair i, j when $\ell=1$, but we are not considering $\ell=1$ here. For $\ell \geq 2$, we can see that this is always possible with a quick induction argument:

- When $\ell=2$, let $i=1, j=0$, which is the best we can do.
- Assume for some fixed $\ell \geq 2$ that we have $\ell=2 i+3 j$ for nonnegative integers i, j. If $i=0$, then $j \geq 1$ so that $\ell \geq 2$. Then $\ell=3 j$, so $\ell+1=3(j-1)+2 \cdot 2=3 j^{\prime}+2 i^{\prime}$ for i^{\prime}, j^{\prime} nonnegative. Otherwise, $i \geq 1$, so

$$
\ell+1=2(i-1)+3(j+1)=2 i^{\prime}+3 j^{\prime}
$$

where i^{\prime}, j^{\prime} are nonnegative integers. Since such a pair exists, there must be a smallest such nonnegative i^{\prime}. We conclude by induction that this is always possible for $\ell \geq 2$.
Next, let $a_{i j}=0$ for all other i, j. Then

$$
\psi(f)=\sum_{\ell=0}^{k} p_{\ell} t^{\ell}=p(t)
$$

We conclude that the image of ψ is the set of polynomials $p(t)$ such that $\frac{d p}{d t}(0)=0$.
(b) It is simple to check that $g(x, y)=x^{3}-y^{2}+x y \in \mathbb{C}[x, y]$ is in the kernel of φ. I claim that this generates the kernel: Let $f \in \operatorname{ker} \varphi$. Viewing f as a polynomial in y with coefficients in $\mathbb{C}[x]$, since the leading y-coefficient of g is a unit, we can find $q, r \in \mathbb{C}[x, y]$ with

$$
f(x, y)=q(x, y) g(x, y)+r(x, y)
$$

where $r(x, y)=h(x) y+c(x)$ for $h(x), c(x) \in \mathbb{C}[x]$. Applying φ, we see that $r\left(t^{2}-t, t^{3}-t^{2}\right)=0$, so

$$
t^{2}(t-1) h(t(t-1))+c(t(t-1))=0
$$

Assume h has degree i and c has degree j. If either of i, j is ≥ 1, then the other must be as well so that the highest coefficients can cancel
out. Then $t^{2}(t-1) h(t(t-1))$ has degree $2 i+3$, and $c(t(t-1))$ has degree $2 j$, so $2 i+3=2 j$, a contradiction since the left side is odd and the right side is even. Thus $i=j=0$, so h, c are constants. Then in order for the above polynomial to be 0 , we must have $h=c=0$. Thus $f=q g$, so $f \in(g)$, and we conclude that $g(x, y)$ generates $\operatorname{ker} \varphi$.

Now, if $f(x, y) \in \mathbb{C}[x, y]$, then

$$
(\varphi(f))(t)=f\left(t^{2}-t, t^{3}-t^{2}\right)=: p(t)
$$

so we see that $p(0)=f(0,0)=p(1)$. Now, assume $p(0)=p(1)$ for a polynomial $p(t) \in \mathbb{C}[t]$. Then $p(t)=t(t-1) q(t)+c$ for some constant c. In a way similar to part (a), we can construct a polynomial $f(x, y) \in \mathbb{C}[x, y]$ such that $\varphi(f)=f\left(t^{2}-t, t^{3}-t^{2}\right)=p(t)$. We conclude that the image of φ is the set of polynomials $p(t)$ such that $p(0)=p(1)$.

An intuitive explanation is that thinking of x, y as parametrizing a curve in \mathbb{C}^{2}, we have $(x(t), y(t))=\left(t^{2}-t, t^{3}-t^{2}\right)$, so $y=t x$, so $\frac{y}{x}=t$. Then $x=t^{2}-t=\left(\frac{y}{x}\right)^{2}-\frac{y}{x}$, and multiplying across by x^{2}, we get $x^{3}-y^{2}+x y=0$.
12.4.1) (a) We immediately get $x^{9}-x=x(x-1)(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)$, and since $x^{4}+1$ has no roots in \mathbb{F}_{3}, if it factors it must factor into a product of quadratics. We can find that $x^{4}+1=\left(x^{2}+x+2\right)\left(x^{2}+2 x+2\right)$, so

$$
x^{9}-x=x(x-1)(x+1)\left(x^{2}+1\right)\left(x^{2}+x+2\right)\left(x^{2}+2 x+2\right)
$$

in $\mathbb{F}_{3}[x]$.
Using the Frobenius automorphism $(a+b)^{p}=a^{p}+b^{p}$ in a ring of characteristic p, we get

$$
x^{9}-1=\left(x^{3}\right)^{3}+(-1)^{3}=\left(x^{3}-1\right)^{3}=(x-1)^{9}
$$

in $\mathbb{F}_{3}[x]$.
(b) We immediately get $x^{16}-x=x(x-1)\left(1+x+\cdots+x^{14}\right)$. Applying the sieve of Eratosthenes, we see

$$
\begin{aligned}
1+x+\cdots+x^{14} & =\left(x^{2}+x+1\right)\left(x^{12}+x^{9}+x^{6}+x^{3}+1\right) \\
& =\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)
\end{aligned}
$$

which are irreducible, so
$x^{16}-x=x(x-1)\left(x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)\left(x^{4}+x^{3}+x^{2}+x+1\right)$
in $\mathbb{F}_{2}[x]$.
12.4.4) - In $\mathbb{F}_{2}[x]$: This polynomial is $x^{5}+x^{3}+x+1$, which has 1 as a root, so can be written as $(x-1)\left(x^{4}+x^{3}+1\right)$, each of which are irreducible.

- In $\mathbb{F}_{3}[x]$: This polynomial is $x^{5}+2 x^{4}+2$, which has -1 as a root, so can be written as $(x+1)\left(x^{4}+x^{3}+2 x^{2}+x+2\right)$. The term on the right also has -1 as a root, so we can write this as $(x+1)^{2}\left(x^{2}+2 x+2\right)$, and these terms are each irreducible.
- In $\mathbb{Q}[x]:-1$ is a root, so we can write this polynomial as $(x+1)\left(x^{4}+\right.$ $\left.x^{3}+2 x^{2}-2 x+5\right)$. For the term on the right, reduce modulo 2 to get the polynomial $x^{4}+x^{3}+1$, which is irreducible in $\mathbb{F}_{2}[x]$. Since the original polynomial is monic, we conclude that it is irreducible in $\mathbb{Q}[x]$ as well, so we cannot factor this polynomial any further.
12.4.6) - In $\mathbb{Q}[x]$: By Eistenstein's criterion with the prime $p=5, x^{5}+5 x+5$ is irreucible in $\mathbb{Q}[x]$
- In $\mathbb{F}_{2}[x]$: This polynomial is $x^{5}+x+1$ in $\mathbb{F}_{2}[x]$. Since there are no roots in \mathbb{F}_{2}, any factorization must involve a quadratic and a cubic, and indeed we can find

$$
x^{5}+x+1=\left(x^{3}+x^{2}+1\right)\left(x^{2}+x+1\right)
$$

12.4.13) (a) Let

$$
p(x):=\prod_{i=1}^{n} \frac{x-a_{i}}{a_{0}-a_{i}}
$$

which has degree n. It is immediately clear that $p\left(a_{i}\right)=0$ for $1 \leq$ $i \leq n$ and $p\left(a_{0}\right)=1$.
(b) - Uniqueness: Assume f, g are each polynomials of degree $\leq d$ such that $f\left(a_{i}\right)=g\left(a_{i}\right)=b_{i}$ for $0 \leq i \leq d$. Then $f-g$ is a polynomial of degree $\leq d$ that is zero at the $d+1$ distinct points a_{0}, \ldots, a_{d}, so $f-g$ must be identically 0 . Thus $f=g$.

- Existence: Let

$$
g(x):=\sum_{i=0}^{d} b_{i} \prod_{j \neq i} \frac{x-a_{j}}{a_{i}-a_{j}},
$$

which has degree at most d. We immediately see that $g\left(a_{i}\right)=b_{i}$ for $0 \leq i \leq d$.
12.4.16) Suppose for a contradiction that $x^{14}+8 x^{13}+3=f g$, where $f, g \in \mathbb{Q}[x]$ and

$$
\begin{aligned}
& f=a_{0}+\cdots+a_{r} x^{r} \\
& g=b_{0}+\cdots+b_{14-r} x^{14-r}
\end{aligned}
$$

for some $r=1, \ldots, 13$. Reducing modulo 3 , we get

$$
x^{13}(x+2)=\bar{f} \bar{g}
$$

Since $\mathbb{F}_{3}[x]$ is a UFD, without loss of generality we have $\bar{f}=x^{k}$ and $\bar{g}=x^{13-k}(x+2)$ for some $k=0, \ldots, 13$. If $k=0$, then $\bar{g}=x^{14}+2 x^{13}$, so g has degree 14, contradicting that $\operatorname{deg} g \leq 13$. Thus $1 \leq k \leq 13$. Since $a_{0} b_{0}=3$, we have either $a_{0}= \pm 3$ and $b_{0}= \pm 1$ or $a_{0}= \pm 1$ and $b_{0}= \pm 3$. Thus one of \bar{f}, \bar{g} should have constant term ± 1, but each has constant term 0 , a contradiction. Thus $x^{14}+8 x^{13}+3$ is irreducible in $\mathbb{Q}[x]$.

