Homework 2 Key

12.3.1) (a) First notice that $1 + \sqrt{2}$ is a root of the polynomial $x^2 - 2x - 1$, so $(x^2 - 2x - 1) \subseteq \ker \varphi$. To see the reverse inclusion, suppose that $f(x) \in \ker \varphi$. Since this polynomial is monic, we can find polynomials $q(x), r(x) \in \mathbb{Z}[x]$ with deg $r(x) < \deg(x^2 - 2x - 1) = 2$ such that

$$f(x) = q(x)(x^2 - 2x - 1) + r(x).$$

Plugging in $1 + \sqrt{2}$, we see that $r(1 + \sqrt{2}) = 0$. Since $r \in \mathbb{Z}[x]$ must be linear or constant and since $1 + \sqrt{2}$ is irrational, we get that ris the constant polynomial 0. Thus $f(x) = q(x)(x^2 - 2x - 1)$, so by definition, $f \in (x^2 - 2x - 1)$. We conclude that ker φ is a principal ideal generated by $x^2 - 2x - 1$.

(b) First notice that $\frac{1}{2} + \sqrt{2}$ is a root of the polynomial $4x^2 - 4x - 7$, so $(4x^2 - 4x - 7) \subseteq \ker \varphi$. Now let $f \in \ker \varphi$. Since $\mathbb{Q}[x]$ is a Euclidean domain, viewing f as a polynomial with rational coefficients, we can find $q(x), r(x) \in \mathbb{Q}[x]$ such that r has degree 0 or 1, and

$$f(x) = q(x)(4x^2 - 4x - 7) + r(x)$$

Plugging in $\frac{1}{2} + \sqrt{2}$, we see that $r(\frac{1}{2} + \sqrt{2}) = 0$, and by the same reasoning as above, r is identically 0. Then $f(x) = q(x)(4x^2 - 4x - 7)$. Since $4x^2 - 4x - 7$ is a primitive polynomial that divides f in $\mathbb{Q}[x]$, q(x) is actually in $\mathbb{Z}[x]$. We conclude that ker φ is a principal ideal generated by $4x^2 - 4x - 7$.

- 12.3.2) \implies Assume two integer polynomials f, g are relatively prime elements of $\mathbb{Q}[x]$. Then there are $a, b \in \mathbb{Q}[x]$ such that af + bg = 1. Multiply by some integer N to clear the denominators of the coefficients of a and b to get (Na)f + (Nb)g = N. Then $Na, Nb \in \mathbb{Z}[x]$, so $N \in (f, g)$.
 - $\xleftarrow{} \quad \text{Assume that } f,g \text{ are integer polynomials such that the ideal } (f,g) \subseteq \\ \mathbb{Z}[x] \text{ contains an integer } N. \text{ Then } N = af + bg \text{ for some integer polynomials } a,b. \text{ Dividing by } N, \text{ we get } \frac{a}{N}f + \frac{b}{N}g = 1, \text{ where } \frac{a}{N}, \frac{b}{N} \in \\ \mathbb{Q}[x]. \text{ Thus } f,g \text{ are relatively prime elements of } \mathbb{Q}[x].$

12.3.4) Assume xy - zw = fg for some $f, g \in \mathbb{C}[x, y, z, w]$. Then without loss of generality, f must have x-degree 1 and g has x-degree 0, so f = ax + b for $a, b \in \mathbb{C}[y, z, w]$ and $g \in \mathbb{C}[y, z, w]$. We then get

$$xy - zw = agx + bg,$$

so ag = y and bg = -zw, forcing one of a, g to have y-degree 1 and the other to have y-degree 0. If g has y-degree 1, then bg has y-degree at least 1, a contradiction, so g has y-degree 0. Similarly, g has z-degree and w-degree 0, so g is a nonzero constant in \mathbb{C} , and thus is a unit. We conclude that xy - zw is irreducible in $\mathbb{C}[x, y, z, w]$.

12.3.5) (a) It is clear that if $f(x, y) \in \mathbb{C}[x, y]$, then $p(t) = f(t^2, t^3) = \psi(f)$ is a polynomial with $\frac{dp}{dt}(0) = 0$, as the coefficient of t in p is 0.

Now assume that p(t) is a polynomial with $\frac{dp}{dt}(0) = 0$. Let $p(t) = p_0 + p_2 t^2 + p_3 t^3 + \cdots + p_k t^k$, where we have not written $p_1 t$ since $p_1 = \frac{dp}{dt}(0) = 0$. Construct

$$f = \sum a_{ij} x^i y^j \in \mathbb{C}[x, y]$$

as follows: Let $a_{00} = p_0$. For $2 \le \ell \le k$, let $a_{ij} = p_\ell$ precisely when $2i + 3j = \ell$ for i, j nonnegative and i as small as possible. We cannot find such a pair i, j when $\ell = 1$, but we are not considering $\ell = 1$ here. For $\ell \ge 2$, we can see that this is always possible with a quick induction argument:

- When $\ell = 2$, let i = 1, j = 0, which is the best we can do.
- Assume for some fixed $\ell \geq 2$ that we have $\ell = 2i + 3j$ for nonnegative integers i, j. If i = 0, then $j \geq 1$ so that $\ell \geq 2$. Then $\ell = 3j$, so $\ell + 1 = 3(j-1) + 2 \cdot 2 = 3j' + 2i'$ for i', j' nonnegative. Otherwise, $i \geq 1$, so

$$\ell + 1 = 2(i - 1) + 3(j + 1) = 2i' + 3j'$$

where i', j' are nonnegative integers. Since such a pair exists, there must be a smallest such nonnegative i'. We conclude by induction that this is always possible for $\ell \geq 2$.

Next, let $a_{ij} = 0$ for all other i, j. Then

$$\psi(f) = \sum_{\ell=0}^{k} p_{\ell} t^{\ell} = p(t).$$

We conclude that the image of ψ is the set of polynomials p(t) such that $\frac{dp}{dt}(0) = 0$.

(b) It is simple to check that $g(x, y) = x^3 - y^2 + xy \in \mathbb{C}[x, y]$ is in the kernel of φ . I claim that this generates the kernel: Let $f \in \ker \varphi$. Viewing f as a polynomial in y with coefficients in $\mathbb{C}[x]$, since the leading y-coefficient of g is a unit, we can find $q, r \in \mathbb{C}[x, y]$ with

$$f(x,y) = q(x,y)g(x,y) + r(x,y)$$

where r(x,y) = h(x)y + c(x) for $h(x), c(x) \in \mathbb{C}[x]$. Applying φ , we see that $r(t^2 - t, t^3 - t^2) = 0$, so

$$t^{2}(t-1)h(t(t-1)) + c(t(t-1)) = 0.$$

Assume h has degree i and c has degree j. If either of i, j is ≥ 1 , then the other must be as well so that the highest coefficients can cancel out. Then $t^2(t-1)h(t(t-1))$ has degree 2i+3, and c(t(t-1)) has degree 2j, so 2i+3=2j, a contradiction since the left side is odd and the right side is even. Thus i = j = 0, so h, c are constants. Then in order for the above polynomial to be 0, we must have h = c = 0. Thus f = qg, so $f \in (g)$, and we conclude that g(x, y) generates ker φ .

Now, if $f(x, y) \in \mathbb{C}[x, y]$, then

$$(\varphi(f))(t) = f(t^2 - t, t^3 - t^2) =: p(t)$$

so we see that p(0) = f(0,0) = p(1). Now, assume p(0) = p(1) for a polynomial $p(t) \in \mathbb{C}[t]$. Then p(t) = t(t-1)q(t) + c for some constant c. In a way similar to part (a), we can construct a polynomial $f(x,y) \in \mathbb{C}[x,y]$ such that $\varphi(f) = f(t^2 - t, t^3 - t^2) = p(t)$. We conclude that the image of φ is the set of polynomials p(t) such that p(0) = p(1).

An intuitive explanation is that thinking of x, y as parametrizing a curve in \mathbb{C}^2 , we have $(x(t), y(t)) = (t^2 - t, t^3 - t^2)$, so y = tx, so $\frac{y}{x} = t$. Then $x = t^2 - t = (\frac{y}{x})^2 - \frac{y}{x}$, and multiplying across by x^2 , we get $x^3 - y^2 + xy = 0$.

12.4.1) (a) We immediately get $x^9 - x = x(x-1)(x+1)(x^2+1)(x^4+1)$, and since $x^4 + 1$ has no roots in \mathbb{F}_3 , if it factors it must factor into a product of quadratics. We can find that $x^4 + 1 = (x^2 + x + 2)(x^2 + 2x + 2)$, so

$$x^{9} - x = x(x-1)(x+1)(x^{2}+1)(x^{2}+x+2)(x^{2}+2x+2)$$

in $\mathbb{F}_3[x]$.

Using the Frobenius automorphism $(a + b)^p = a^p + b^p$ in a ring of characteristic p, we get

$$x^{9} - 1 = (x^{3})^{3} + (-1)^{3} = (x^{3} - 1)^{3} = (x - 1)^{9}$$

in $\mathbb{F}_3[x]$.

(b) We immediately get $x^{16} - x = x(x-1)(1+x+\cdots+x^{14})$. Applying the sieve of Eratosthenes, we see

$$1 + x + \dots + x^{14} = (x^2 + x + 1)(x^{12} + x^9 + x^6 + x^3 + 1)$$

= $(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1),$

which are irreducible, so

$$x^{16} - x = x(x-1)(x^2 + x + 1)(x^4 + x + 1)(x^4 + x^3 + 1)(x^4 + x^3 + x^2 + x + 1)$$

in $\mathbb{F}_2[x]$.

- 12.4.4) In $\mathbb{F}_2[x]$: This polynomial is $x^5 + x^3 + x + 1$, which has 1 as a root, so can be written as $(x-1)(x^4 + x^3 + 1)$, each of which are irreducible.
 - In $\mathbb{F}_3[x]$: This polynomial is $x^5 + 2x^4 + 2$, which has -1 as a root, so can be written as $(x+1)(x^4+x^3+2x^2+x+2)$. The term on the right also has -1 as a root, so we can write this as $(x+1)^2(x^2+2x+2)$, and these terms are each irreducible.
 - In $\mathbb{Q}[x]$: -1 is a root, so we can write this polynomial as $(x+1)(x^4 + x^3 + 2x^2 2x + 5)$. For the term on the right, reduce modulo 2 to get the polynomial $x^4 + x^3 + 1$, which is irreducible in $\mathbb{F}_2[x]$. Since the original polynomial is monic, we conclude that it is irreducible in $\mathbb{Q}[x]$ as well, so we cannot factor this polynomial any further.

- 12.4.6) In $\mathbb{Q}[x]$: By Eistenstein's criterion with the prime $p = 5, x^5 + 5x + 5$ is irreucible in $\mathbb{Q}[x]$
 - In $\mathbb{F}_2[x]$: This polynomial is $x^5 + x + 1$ in $\mathbb{F}_2[x]$. Since there are no roots in \mathbb{F}_2 , any factorization must involve a quadratic and a cubic, and indeed we can find

$$x^{5} + x + 1 = (x^{3} + x^{2} + 1)(x^{2} + x + 1).$$

12.4.13) (a) Let

$$p(x) := \prod_{i=1}^{n} \frac{x - a_i}{a_0 - a_i},$$

which has degree n. It is immediately clear that $p(a_i) = 0$ for $1 \le i \le n$ and $p(a_0) = 1$.

- (b) Uniqueness: Assume f, g are each polynomials of degree $\leq d$ such that $f(a_i) = g(a_i) = b_i$ for $0 \leq i \leq d$. Then f g is a polynomial of degree $\leq d$ that is zero at the d+1 distinct points a_0, \ldots, a_d , so f g must be identically 0. Thus f = g.
 - Existence: Let

$$g(x) := \sum_{i=0}^d b_i \prod_{j \neq i} \frac{x - a_j}{a_i - a_j},$$

which has degree at most d. We immediately see that $g(a_i) = b_i$ for $0 \le i \le d$.

12.4.16) Suppose for a contradiction that $x^{14} + 8x^{13} + 3 = fg$, where $f, g \in \mathbb{Q}[x]$ and

$$f = a_0 + \dots + a_r x^r, g = b_0 + \dots + b_{14-r} x^{14-r}$$

for some r = 1, ..., 13. Reducing modulo 3, we get

$$x^{13}(x+2) = \overline{f}\overline{g}.$$

Since $\mathbb{F}_3[x]$ is a UFD, without loss of generality we have $\overline{f} = x^k$ and $\overline{g} = x^{13-k}(x+2)$ for some $k = 0, \ldots, 13$. If k = 0, then $\overline{g} = x^{14} + 2x^{13}$, so g has degree 14, contradicting that deg $g \leq 13$. Thus $1 \leq k \leq 13$. Since $a_0b_0 = 3$, we have either $a_0 = \pm 3$ and $b_0 = \pm 1$ or $a_0 = \pm 1$ and $b_0 = \pm 3$. Thus one of $\overline{f}, \overline{g}$ should have constant term ± 1 , but each has constant term 0, a contradiction. Thus $x^{14} + 8x^{13} + 3$ is irreducible in $\mathbb{Q}[x]$.