
Homework 2 Key

12.3.1) (a) First notice that 1 +
√
2 is a root of the polynomial x2 − 2x − 1,

so (x2 − 2x − 1) ⊆ kerφ. To see the reverse inclusion, suppose that
f(x) ∈ kerφ. Since this polynomial is monic, we can find polynomials
q(x), r(x) ∈ Z[x] with deg r(x) < deg(x2 − 2x− 1) = 2 such that

f(x) = q(x)(x2 − 2x− 1) + r(x).

Plugging in 1 +
√
2, we see that r(1 +

√
2) = 0. Since r ∈ Z[x] must

be linear or constant and since 1 +
√
2 is irrational, we get that r

is the constant polynomial 0. Thus f(x) = q(x)(x2 − 2x − 1), so by
definition, f ∈ (x2 − 2x − 1). We conclude that kerφ is a principal
ideal generated by x2 − 2x− 1.

(b) First notice that 1
2 +

√
2 is a root of the polynomial 4x2 − 4x− 7, so

(4x2 − 4x− 7) ⊆ kerφ. Now let f ∈ kerφ. Since Q[x] is a Euclidean
domain, viewing f as a polynomial with rational coefficients, we can
find q(x), r(x) ∈ Q[x] such that r has degree 0 or 1, and

f(x) = q(x)(4x2 − 4x− 7) + r(x).

Plugging in 1
2 +

√
2, we see that r( 12 +

√
2) = 0, and by the same

reasoning as above, r is identically 0. Then f(x) = q(x)(4x2−4x−7).
Since 4x2 − 4x − 7 is a primitive polynomial that divides f in Q[x],
q(x) is actually in Z[x]. We conclude that kerφ is a principal ideal
generated by 4x2 − 4x− 7.
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12.3.2) =⇒ Assume two integer polynomials f, g are relatively prime elements of
Q[x]. Then there are a, b ∈ Q[x] such that af + bg = 1. Multiply by
some integer N to clear the denominators of the coefficients of a and
b to get (Na)f + (Nb)g = N . Then Na,Nb ∈ Z[x], so N ∈ (f, g).

⇐= Assume that f, g are integer polynomials such that the ideal (f, g) ⊆
Z[x] contains an integer N . Then N = af + bg for some integer
polynomials a, b. Dividing by N , we get a

N f+
b
N g = 1, where a

N ,
b
N ∈

Q[x]. Thus f, g are relatively prime elements of Q[x].
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12.3.4) Assume xy − zw = fg for some f, g ∈ C[x, y, z, w]. Then without loss of
generality, f must have x-degree 1 and g has x-degree 0, so f = ax+ b for
a, b ∈ C[y, z, w] and g ∈ C[y, z, w]. We then get

xy − zw = agx+ bg,

so ag = y and bg = −zw, forcing one of a, g to have y-degree 1 and the
other to have y-degree 0. If g has y-degree 1, then bg has y-degree at
least 1, a contradiction, so g has y-degree 0. Similarly, g has z-degree
and w-degree 0, so g is a nonzero constant in C, and thus is a unit. We
conclude that xy − zw is irreducible in C[x, y, z, w].
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12.3.5) (a) It is clear that if f(x, y) ∈ C[x, y], then p(t) = f(t2, t3) = ψ(f) is a
polynomial with dp

dt (0) = 0, as the coefficient of t in p is 0.

Now assume that p(t) is a polynomial with dp
dt (0) = 0. Let p(t) =

p0 + p2t
2 + p3t

3 + · · · + pkt
k, where we have not written p1t since

p1 = dp
dt (0) = 0. Construct

f =
∑

aijx
iyj ∈ C[x, y]

as follows: Let a00 = p0. For 2 ≤ ℓ ≤ k, let aij = pℓ precisely when
2i+3j = ℓ for i, j nonnegative and i as small as possible. We cannot
find such a pair i, j when ℓ = 1, but we are not considering ℓ = 1
here. For ℓ ≥ 2, we can see that this is always possible with a quick
induction argument:

• When ℓ = 2, let i = 1, j = 0, which is the best we can do.

• Assume for some fixed ℓ ≥ 2 that we have ℓ = 2i + 3j for non-
negative integers i, j. If i = 0, then j ≥ 1 so that ℓ ≥ 2. Then
ℓ = 3j, so ℓ+1 = 3(j−1)+2 ·2 = 3j′+2i′ for i′, j′ nonnegative.
Otherwise, i ≥ 1, so

ℓ+ 1 = 2(i− 1) + 3(j + 1) = 2i′ + 3j′

where i′, j′ are nonnegative integers. Since such a pair exists,
there must be a smallest such nonnegative i′. We conclude by
induction that this is always possible for ℓ ≥ 2.

Next, let aij = 0 for all other i, j. Then

ψ(f) =

k∑
ℓ=0

pℓt
ℓ = p(t).

We conclude that the image of ψ is the set of polynomials p(t) such
that dp

dt (0) = 0.

(b) It is simple to check that g(x, y) = x3 − y2 + xy ∈ C[x, y] is in the
kernel of φ. I claim that this generates the kernel: Let f ∈ kerφ.
Viewing f as a polynomial in y with coefficients in C[x], since the
leading y-coefficient of g is a unit, we can find q, r ∈ C[x, y] with

f(x, y) = q(x, y)g(x, y) + r(x, y)

where r(x, y) = h(x)y + c(x) for h(x), c(x) ∈ C[x]. Applying φ, we
see that r(t2 − t, t3 − t2) = 0, so

t2(t− 1)h(t(t− 1)) + c(t(t− 1)) = 0.

Assume h has degree i and c has degree j. If either of i, j is ≥ 1, then
the other must be as well so that the highest coefficients can cancel
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out. Then t2(t− 1)h(t(t− 1)) has degree 2i+ 3, and c(t(t− 1)) has
degree 2j, so 2i+3 = 2j, a contradiction since the left side is odd and
the right side is even. Thus i = j = 0, so h, c are constants. Then
in order for the above polynomial to be 0, we must have h = c = 0.
Thus f = qg, so f ∈ (g), and we conclude that g(x, y) generates
kerφ.

Now, if f(x, y) ∈ C[x, y], then

(φ(f))(t) = f(t2 − t, t3 − t2) =: p(t),

so we see that p(0) = f(0, 0) = p(1). Now, assume p(0) = p(1) for a
polynomial p(t) ∈ C[t]. Then p(t) = t(t − 1)q(t) + c for some con-
stant c. In a way similar to part (a), we can construct a polynomial
f(x, y) ∈ C[x, y] such that φ(f) = f(t2 − t, t3 − t2) = p(t). We con-
clude that the image of φ is the set of polynomials p(t) such that
p(0) = p(1).

An intuitive explanation is that thinking of x, y as parametrizing a
curve in C2, we have (x(t), y(t)) = (t2 − t, t3 − t2), so y = tx, so
y
x = t. Then x = t2 − t = ( yx )

2 − y
x , and multiplying across by x2, we

get x3 − y2 + xy = 0.
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12.4.1) (a) We immediately get x9−x = x(x−1)(x+1)(x2+1)(x4+1), and since
x4 + 1 has no roots in F3, if it factors it must factor into a product
of quadratics. We can find that x4+1 = (x2+x+2)(x2+2x+2), so

x9 − x = x(x− 1)(x+ 1)(x2 + 1)(x2 + x+ 2)(x2 + 2x+ 2)

in F3[x].

Using the Frobenius automorphism (a + b)p = ap + bp in a ring of
characteristic p, we get

x9 − 1 = (x3)3 + (−1)3 = (x3 − 1)3 = (x− 1)9

in F3[x].

(b) We immediately get x16 − x = x(x− 1)(1 + x+ · · ·+ x14). Applying
the sieve of Eratosthenes, we see

1 + x+ · · ·+ x14 = (x2 + x+ 1)(x12 + x9 + x6 + x3 + 1)

= (x2 + x+ 1)(x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1),

which are irreducible, so

x16 − x = x(x− 1)(x2 + x+ 1)(x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1)

in F2[x].
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12.4.4) • In F2[x]: This polynomial is x5+x3+x+1, which has 1 as a root, so
can be written as (x− 1)(x4 + x3 +1), each of which are irreducible.

• In F3[x]: This polynomial is x5 +2x4 +2, which has −1 as a root, so
can be written as (x+1)(x4+x3+2x2+x+2). The term on the right
also has −1 as a root, so we can write this as (x+ 1)2(x2 + 2x+ 2),
and these terms are each irreducible.

• In Q[x]: −1 is a root, so we can write this polynomial as (x+1)(x4+
x3 + 2x2 − 2x + 5). For the term on the right, reduce modulo 2 to
get the polynomial x4 + x3 + 1, which is irreducible in F2[x]. Since
the original polynomial is monic, we conclude that it is irreducible in
Q[x] as well, so we cannot factor this polynomial any further.
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12.4.6) • In Q[x]: By Eistenstein’s criterion with the prime p = 5, x5 +5x+5
is irreucible in Q[x]

• In F2[x]: This polynomial is x5 + x + 1 in F2[x]. Since there are no
roots in F2, any factorization must involve a quadratic and a cubic,
and indeed we can find

x5 + x+ 1 = (x3 + x2 + 1)(x2 + x+ 1).
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12.4.13) (a) Let

p(x) :=

n∏
i=1

x− ai
a0 − ai

,

which has degree n. It is immediately clear that p(ai) = 0 for 1 ≤
i ≤ n and p(a0) = 1.

(b) • Uniqueness: Assume f, g are each polynomials of degree ≤ d
such that f(ai) = g(ai) = bi for 0 ≤ i ≤ d. Then f − g is a
polynomial of degree ≤ d that is zero at the d+1 distinct points
a0, . . . , ad, so f − g must be identically 0. Thus f = g.

• Existence: Let

g(x) :=

d∑
i=0

bi
∏
j ̸=i

x− aj
ai − aj

,

which has degree at most d. We immediately see that g(ai) = bi
for 0 ≤ i ≤ d.
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12.4.16) Suppose for a contradiction that x14 + 8x13 + 3 = fg, where f, g ∈ Q[x]
and

f = a0 + · · ·+ arx
r,

g = b0 + · · ·+ b14−rx
14−r

for some r = 1, . . . , 13. Reducing modulo 3, we get

x13(x+ 2) = fg.

Since F3[x] is a UFD, without loss of generality we have f = xk and
g = x13−k(x+2) for some k = 0, . . . , 13. If k = 0, then g = x14 +2x13, so
g has degree 14, contradicting that deg g ≤ 13. Thus 1 ≤ k ≤ 13. Since
a0b0 = 3, we have either a0 = ±3 and b0 = ±1 or a0 = ±1 and b0 = ±3.
Thus one of f, g should have constant term ±1, but each has constant
term 0, a contradiction. Thus x14 + 8x13 + 3 is irreducible in Q[x].
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