Math 30820: Honors Algebra IV Problem Set 3

- 1. Artin, §14.1, problems 1.1, 1.2, 1.4.
- 2. Artin, §14.2, problems 2.1, 2.4.
- 3. Let R be a ring and let $f: M \to N$ be a homomorphism of R-modules. Assume that ker(f) and im(f) are finitely generated R-modules. Prove that M is a finitely generated R-module.
- 4. Let R be an integral domain and let M be an R-module. An element $m \in M$ is called a *torsion element* if there exists some nonzero $r \in R$ with rm = 0. Let Tor(M) be the set of all torsion elements.
 - (a) Prove that Tor(M) is an *R*-submodule of *M*.
 - (b) Prove that M/Tor(M) is torsion-free, i.e., that Tor(M/Tor(M)) = 0.
 - (c) Regard \mathbb{C} as a module over $\mathbb{Z}[i]$ via the usual complex multiplication, so for $r \in \mathbb{Z}[i]$ and $m \in \mathbb{C}$ we have $rm \in \mathbb{C}$ defined as usual. Thus $\mathbb{Z}[i] \subset \mathbb{C}$ is a $\mathbb{Z}[i]$ -submodule, so we can define the quotient module $M = \mathbb{C}/\mathbb{Z}[i]$. Question: determine Tor(M).