
Homework 3 Key

14.1.1) Let R be a ring and let V be the R-module R. Assume φ : V → V is
a homomorphism. Let α = φ(1). Then for any v ∈ V , we must have
φ(v) = φ(v · 1) = vφ(1) = vα, so any homomorphism must be of the form
φ(v) = vα for some α ∈ R. It is straightforward to verify that for any
α ∈ R, this map is a valid homomorphism, so we conclude that these are
all the homomorphisms φ : V → V .

1



14.1.2) Let V be an abelian group. Assume V has the structure of a Q-module
with its given law of composition as addition. By definition 0v = 0 must
hold. Then if v = 1

nx, for n ≥ 1, we must have nv = x, and if there were
two such elements v, v′, we would have n(v′ − v) = nv − nv′ = x− x = 0.
Multiplying by 1

n , since 1y = y for all y ∈ V , we get v′ − v = 0, so v′ = v.

Now we show that m
n x is uniquely defined for m,n ≥ 1 and any x ∈ V . For

any m ≥ 1 and any y ∈ V , we must have my =
∑m

i=1 y by distributivity.
Then m

n x = m( 1nx) =
∑m

i=1
1
nx. Since addition is uniquely defined and

we have shown that 1
nx is uniquely defined, we get that m

n x is uniquely
defined.

Finally, we show that m
n x is uniquely defined for m < 0, n ≥ 1. We must

have m
n x = −(−m

n x), where −m,n ≥ 0, so −m
n x is uniquely defined, so

−(−m
n x) is uniquely defined since the additive inverse is uniquely defined

by the group structure.

We conclude that the structure is uniquely determined.
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14.1.4) (a) Let S be a simple R-module and let s ∈ S be nonzero. The map
φ : R → S given by φ(r) = rs is surjective because the image is a
nonempty submodule of S (it contains s = φ(1)) and by simplicity,
Imφ = S. By the first isomorphism theorem, R/ kerφ ∼= S, so
R/ kerφ is simple as well. Let r+kerφ ∈ R/ kerφ be nonzero. Then
0 ̸= (r + kerφ) ⊆ R/ kerφ, so (r + kerφ) = R/ kerφ by simplicity,
so 1 + kerφ ∈ (r + kerφ), so r + kerφ is invertible as an element of
the ring R/ kerφ. Thus R/ kerφ is a field, which is true if and only
if kerφ is a maximal ideal.

(b) Notice that Imφ is a submodule of S′, so by simplicity we must have
either Imφ = 0 or Imφ = S′. In the former case, φ is the zero map,
so in that case we are done.

Assume Imφ = S′, i.e. φ is surjective. Since kerφ is a submodule
of S′, by simplicity we must have kerφ = 0 or kerφ = S. The
latter cannot happen since that would force Imφ = 0, which we have
assumed is not the case. Thus kerφ = 0, so φ is injective, and we
conclude that φ is an isomorphism.
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14.2.1) First notice that M cannot be principle, because if we had M = (f) for
some f ∈, then since x ∈ M , we must have fg = x for some g ∈ C[x, y].
Then we must have deg f = 1 and deg g = 0 or deg f = 0 and deg g = 1. In
the latter case, we have f constant, but M does not contain any nonzero
constants. In the latter case, we have f(x, y) = ax + by + c for some
a, b, c ∈ C. If a ̸= 0. then any nonzero element in M must have x-degree
at least 1, but y ∈ M has x-degree 0, and likewise if b ̸= 0. But then f is
constant, and we arrive at the same problem as above.

Thus if M is free, then it must have at least two basis elements α, β ∈ R.
But then since we are working in an R module, we may use elements of R
as scalars. Then since R is commutative, βα + (−α)β = 0, contradicting
linear independence. Thus M is not free.
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14.2.4) Let I be an ideal of a ring R.

(a) I is a free module if and only if I is 0 or I is a principal ideal generated
by some r ∈ R that is not a zero-divisor:

=⇒ Assume I is free. If I = 0, we are done, so assume I ̸= 0. As-
sume for a contradiction that I is not principal, and let B ⊆ R
be a minimal generating set with at least two distinct elements
x, y. Then since x, y ∈ R, we have yx+(−xy) = 0, contradicting
linear independence, so I is principal.

Now assume for a contradiction that I = (r) for a zero-divisor,
so mr = 0 for some nonzero m. Then for a basis {x} of I,
since x ∈ I, we must have x = ra for some a ∈ R. Then
mx = m(ra) = (mr)a = 0, contradicting linear independence of
{x}, so I must be generated by an element that is not a zero
divisor.

⇐= If I = 0, then I is a zero-dimensional free module with basis
∅. If I = (r) where r is not a zero divisor, then {r} is linearly
independent and spanning, and thus I is free.

(b) If I = 0, then R/I ∼= R is free generated by 1 ∈ R. If I = R, then
R/I ∼= 0 is free with basis ∅. Now assume I is a nonzero proper ideal
of R. Let B be a generating set for R/I. Let x+ I ∈ B and let r ∈ I
be nonzero. Then rx ∈ I since I is an ideal, so r(x+I) = rx+I = I,
where I is the zero element of R/I, so B is not linearly independent.
Thus R/I is not free.
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3) Let R be a ring and let f : M → N be a homomorphism of R-modules
with ker f, Im f finitely generated R-modules. We will show that M is a
finitely generated R-module. Let K = {k1, . . . , kn} be a generating set for
kerφ. By the first isomorphism theorem, M/ ker f ∼= Im f , so M/ ker f is
finitely generated. Let I = {i1 +ker f, . . . , im +ker f} be a generating set
for M/ ker f for representatives i1, . . . , im ∈ M . Let I ′ = {i1, . . . , im}.

I claim that B := K∪I ′ is a generating set for M : Let x ∈ M . Then since
I is a generating set for M/ ker f , there are c1, . . . , cm ∈ R such that

x+ ker f = c1(i1 + ker f) + · · ·+ cm(im + ker f) = (c1ii + . . .+ cmim) + ker f.

This implies that

x− (c1ii + . . .+ cmim) ∈ ker f,

and since ker f is generated by K, there are d1, . . . , dn ∈ R such that

x− (c1ii + . . .+ cmim) = d1k1 + · · ·+ dnkn,

or equivalently,

x = c1ii + . . .+ cmim + d1k1 + · · ·+ dnkn.

This proves that B is a finite generating set for M .
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4) (a) It suffices to show that for any m,n ∈ Tor(M) and any r, s ∈ R, we
have rm + sn ∈ Tor(M): since m,n ∈ Tor(M), there are nonzero
r′, s′ ∈ R such that r′m = s′n = 0. Since R is an integral domain,
we have r′s′ ̸= 0, and moreover it is a commutative ring, so we have

r′s′(rm+ sn) = rs′(r′m) + r′s(s′n) = rs′(0) + r′s(0) = 0,

so rm+ sn ∈ Tor(M),so Tor(M) is an R-submodule of M .

(b) Let m + Tor(M) ∈ Tor(M/Tor(M)). Then there is some nonzero
r ∈ R such that rm + Tor(M) = r(m + Tor(M)) = Tor(M). This
implies that rm ∈ Tor(M), so there is some nonzero r′ ∈ R with
(r′r)m = r′(rm) = 0. Since R is an integral domain, r′r ̸= 0,
so m ∈ Tor(M), so m + Tor(M) = Tor(M), the zero element of
M/Tor(M). We conclude that Tor(M/Tor(M)) = 0.

(c) I claim that Tor(M) = Q[i]/Z[i]. First, we see that any element
(p + qi) + Z[i] ∈ Q[i]/Z[i] is a torsion element. Since p, q ∈ Q, we
have p = m

n , q = r
s for integers m,n, r, s with n, s ̸= 0. Notice that

n, s ∈ Z[i] with ns ̸= 0, and ns((p+ qi)+Z[i]) = (sm+nri)+Z[i] =
Z[i], the zero element of M , so any element in Q[i]/Z[i] is indeed a
torsion element.

Now, assume (x+yi)+Z[i] ∈ M is any torsion element, with x, y ∈ R
Then there is some nonzero a+ bi ∈ Z[i] with

(a+ bi)
(
(x+ yi) + Z[i]

)
= Z[i],

so (a+ bi)(x+yi) = (ax− by)+(ay+ bx)i ∈ Z[i]. Thus M := ax− by
and N := ay + bx are both integers. By assumption at least one of
a, b is nonzero. If either is zero, say b = 0 without loss of generality,
then we get M = ax,N = ay are both integers, so x = M

a and y = N
a

are both rational, so assume a, b are both nonzero. Solving the above
system of equations for x and y, we get

x =
aM + bN

a2 + b2
,

y =
aN − bM

a2 + b2
.

Since a, b,M,N are all integers, we get that x, y are rational. We
conclude that Tor(M) = Q[i]/Z[i].
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