Homework 3 Key

14.1.1) Let R be a ring and let V' be the R-module R. Assume ¢ : V — V is
a homomorphism. Let a = ¢(1). Then for any v € V, we must have
o(v) = p(v-1) = vp(l) = va, so any homomorphism must be of the form
p(v) = va for some « € R. Tt is straightforward to verify that for any
a € R, this map is a valid homomorphism, so we conclude that these are
all the homomorphisms ¢ : V. — V.



14.1.2) Let V be an abelian group. Assume V has the structure of a Q-module
with its given law of composition as addition. By definition 0v = 0 must
hold. Then if v = %x, for n > 1, we must have nv = z, and if there were
two such elements v, v’, we would have n(v' —v) =nv—nv' =z —x = 0.
Multiplying by 1, since 1y =y for all y € V, we get v/ —v =0, so v/ = v.

Now we show that 7"z is uniquely defined for m,n > 1 and any x € V. For
any m > 1 and any y € V, we must have my = Z:;l y by distributivity.
Then 2z = m(iz) = 37", 2. Since addition is uniquely defined and
we have shown that %x is uniquely defined, we get that “z is uniquely
defined.

Finally, we show that 7z is uniquely defined for m < 0,n > 1. We must
have 2z = —(="x), where —m,n > 0, so =z is uniquely defined, so
— (=) is uniquely defined since the additive inverse is uniquely defined
by the group structure.

We conclude that the structure is uniquely determined.
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Let S be a simple R-module and let s € S be nonzero. The map
@ : R — S given by ¢(r) = rs is surjective because the image is a
nonempty submodule of S (it contains s = (1)) and by simplicity,
Imp = S. By the first isomorphism theorem, R/keryp = S, so
R/ ker ¢ is simple as well. Let r +ker p € R/ ker ¢ be nonzero. Then
0 # (r+kerp) C R/kery, so (r + kerp) = R/ ker ¢ by simplicity,
so 1+ kery € (r + ker ), so r + ker ¢ is invertible as an element of
the ring R/ ker . Thus R/ ker ¢ is a field, which is true if and only
if ker ¢ is a maximal ideal.

Notice that Im ¢ is a submodule of S/, so by simplicity we must have
either Imy = 0 or Imy = S’. In the former case, ¢ is the zero map,
so in that case we are done.

Assume Imp = ', i.e. ¢ is surjective. Since ker ¢ is a submodule
of §’, by simplicity we must have ker¢o = 0 or kerp = S. The
latter cannot happen since that would force Im ¢ = 0, which we have
assumed is not the case. Thus ker¢p = 0, so ¢ is injective, and we
conclude that ¢ is an isomorphism.



14.2.1) First notice that M cannot be principle, because if we had M = (f) for
some f €, then since © € M, we must have fg = z for some g € Clx, y].
Then we must have deg f =1 and degg =0ordeg f =0anddegg = 1. In
the latter case, we have f constant, but M does not contain any nonzero
constants. In the latter case, we have f(x,y) = ax + by + ¢ for some
a,b,c € C. If a # 0. then any nonzero element in M must have z-degree
at least 1, but y € M has z-degree 0, and likewise if b # 0. But then f is
constant, and we arrive at the same problem as above.

Thus if M is free, then it must have at least two basis elements «, 5 € R.
But then since we are working in an R module, we may use elements of R
as scalars. Then since R is commutative, Sa + (—«a)8 = 0, contradicting
linear independence. Thus M is not free.



14.2.4) Let I be an ideal of a ring R.

(a) Iisafree module if and only if T is 0 or [ is a principal ideal generated
by some r € R that is not a zero-divisor:

= Assume [ is free. If I = 0, we are done, so assume [ # 0. As-
sume for a contradiction that I is not principal, and let B C R
be a minimal generating set with at least two distinct elements
x,y. Then since x,y € R, we have yz + (—zy) = 0, contradicting
linear independence, so [ is principal.

Now assume for a contradiction that I = (r) for a zero-divisor,
so mr = 0 for some nonzero m. Then for a basis {x} of I,
since x € I, we must have x = ra for some a € R. Then
mx = m(ra) = (mr)a = 0, contradicting linear independence of
{z}, so I must be generated by an element that is not a zero
divisor.

<= If I = 0, then I is a zero-dimensional free module with basis
(). If T = (r) where r is not a zero divisor, then {r} is linearly
independent and spanning, and thus [ is free.

(b) If I =0, then R/I = R is free generated by 1 € R. If I = R, then
R/I = 0 is free with basis (). Now assume [ is a nonzero proper ideal
of R. Let B be a generating set for R/I. Let x+1 € Bandlet r € T
be nonzero. Then rz € I since [ is an ideal, so r(x +1) = re+1 =1,
where I is the zero element of R/I, so B is not linearly independent.
Thus R/I is not free.



3) Let R be a ring and let f : M — N be a homomorphism of R-modules
with ker f,Im f finitely generated R-modules. We will show that M is a
finitely generated R-module. Let I = {k1, ..., k,} be a generating set for
ker ¢. By the first isomorphism theorem, M/ ker f = Im f, so M/ ker f is
finitely generated. Let Z = {i; +ker f,...,4,, + ker f} be a generating set
for M/ ker f for representatives i1,...,4, € M. Let Z/ = {i1, ..., im}.

I claim that B := KUZ' is a generating set for M: Let z € M. Then since
T is a generating set for M/ ker f, there are ¢i,..., ¢y € R such that

xtker f=ci(iy+ker f) 4+ +em(im +ker f) = (c1i; + ... + emim) + ker f.
This implies that
x—(c1i; + ...+ Cmim) € ker f,
and since ker f is generated by K, there are dy,...,d, € R such that
x— (19 + ...+ Cmim) = dik1 + - + dnkn,
or equivalently,
T =cii;+ ...+ cmim +diks + -+ dnkn.

This proves that B is a finite generating set for M.
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It suffices to show that for any m,n € Tor(M) and any r,s € R, we
have rm + sn € Tor(M): since m,n € Tor(M), there are nonzero
r’, s’ € R such that 'm = s’n = 0. Since R is an integral domain,
we have r’s’ # 0, and moreover it is a commutative ring, so we have

r's'(rm + sn) = rs'(r'm) + r's(s'n) = rs’(0) + 1's(0) = 0,

so rm + sn € Tor(M),so Tor(M) is an R-submodule of M.

Let m + Tor(M) € Tor(M/Tor(M)). Then there is some nonzero
r € R such that rm + Tor(M) = r(m + Tor(M)) = Tor(M). This
implies that rm € Tor(M), so there is some nonzero v’ € R with
(r'rym = 7'(rm) = 0. Since R is an integral domain, r'r # 0,
so m € Tor(M), so m + Tor(M) = Tor(M), the zero element of
M/ Tor(M). We conclude that Tor(M/ Tor(M)) = 0.

I claim that Tor(M) = Q[i]/Z[i]. First, we see that any element
(p + qi) + Z[i] € Q[i]/Z[i] is a torsion element. Since p,q € Q, we
have p = ™, q = % for integers m,n,r,s with n,s # 0. Notice that
n, s € Z[i] with ns # 0, and ns((p+ qi) + Z[i]) = (sm + nri) + Z[i] =
Z][i], the zero element of M, so any element in Q[é]/Z[i] is indeed a
torsion element.

Now, assume (z+yi)+Z[i] € M is any torsion element, with z,y € R
Then there is some nonzero a + bi € Z[i] with

(a + bi) ((x +yi) + Z[z’]) = 7[i],

so (a+bi)(z+yi) = (ax —by) + (ay +bx)i € Z[i]. Thus M := ax —by
and N := ay + bx are both integers. By assumption at least one of
a, b is nonzero. If either is zero, say b = 0 without loss of generality,
then we get M = ax, N = ay are both integers, so x = % and y = %
are both rational, so assume a, b are both nonzero. Solving the above

system of equations for z and y, we get

aM + bN
a? +b2 "’
aN — bM

v= a2 4+b2

Since a,b, M, N are all integers, we get that z,y are rational. We
conclude that Tor(M) = Q[i]/Z[i].



