Math 30820: Honors Algebra IV Problem Set 4

- 1. Artin, Problem 14.5.1.
- 2. Artin, Problem 14.5.2.
- 3. As we discussed in class, diagonalize the following matrices by multiplying on the left and right by invertible matrices:

(a) The matrix
$$\begin{pmatrix} 36 & 30\\ 23 & 18 \end{pmatrix}$$
 over \mathbb{Z} .
(b) The matrix $\begin{pmatrix} 22 & 40 & 2\\ 24 & 56 & 23\\ 4 & 10 & 5 \end{pmatrix}$ over \mathbb{Z} .
(c) The matrix $\begin{pmatrix} x^2 + 1 & x\\ x^2 - 1 & x + 2 \end{pmatrix}$ over $\mathbb{Q}[x]$.

- 4. Let F be a field and let A be an $n \times n$ matrix over F. Let M_A be F^n regarded as a module over F[x], where x acts on F^n as multiplication by A. Prove that for all $S \in \operatorname{GL}_n(F)$, we have $M_{SAS^{-1}} \cong M_A$ as modules over F[x].
- 5. Let M be an $n \times n$ integer matrix with $\det(M) \neq 0$. Let $A \subset \mathbb{Z}^n$ be the subgroup generated by the columns of M. Prove that $[\mathbb{Z}^n : A] = |\det(M)|$. Here $[\mathbb{Z}^n : A]$ means the index of A as a subgroup of \mathbb{Z}^n .
- 6. Let R be a ring such that every ideal of R is finitely generated. Let M be a submodule of the R-module R^n . Prove that M is finitely generated.
- 7. Let R be a ring such that the following result holds (we proved it in class for PID's):
 - Let $\phi: \mathbb{R}^n \to \mathbb{R}^m$ be an \mathbb{R} -module homomorphism. Then there exist bases $\{e_1, \ldots, e_n\}$ for \mathbb{R}^n and $\{f_1, \ldots, f_m\}$ for \mathbb{R}^m such that

$$f(e_i) = \begin{cases} \delta_i f_i & \text{for } 1 \le i \le \min(n, m), \\ 0 & \text{otherwise} \end{cases}$$

for some $\delta_1, \ldots, \delta_{\min(n,m)} \in R$.

Prove that all finitely generated ideals in R are principal.