Homework 4 Key

14.5.1) We follow the procedure outlined on p . 424-425. Let $R=\mathbb{Z}[\delta]$ and let $I=(2,1+\delta)$ be an ideal of R, where $\delta=\sqrt{-5}$. We obtain a surjective homomorphism $R^{2} \rightarrow I$ given by $\binom{x}{y} \mapsto 2 x+(1+\delta) y$. Let W be the kernel of this map. Then

$$
W=\left\{(x, y) \in R^{2}: x=-\frac{1+\delta}{2} y\right\} .
$$

We easily check that $\binom{-3}{1-\delta},\binom{-1-\delta}{2}$ are both in W and are linearly independent. We can check that these span W, so we let

$$
A:=\left(\begin{array}{cc}
-3 & -1-\delta \\
1-\delta & 2
\end{array}\right)
$$

Then A is a presentation matrix of the ideal $I=(2,1+\delta)$.
14.5.2) Following the procedure outlined on p. 425-426, we reduce the matrix as follows:

$$
\left(\begin{array}{lll}
3 & 1 & 2 \\
1 & 1 & 1 \\
2 & 3 & 6
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
0 & -2 & -1 \\
1 & 1 & 1 \\
0 & 1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{cc}
-2 & -1 \\
1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{ll}
0 & 7 \\
1 & 4
\end{array}\right) \rightarrow\left(\begin{array}{ll}
0 & 7
\end{array}\right) \rightarrow(7)
$$

so the abelian group presented by this matrix is $\mathbb{Z} / 7 \mathbb{Z}$.
3) (a) By performing a series of row and column operations, we diagonalize as follows:

$$
\left(\begin{array}{ll}
36 & 30 \\
23 & 18
\end{array}\right) \rightarrow\left(\begin{array}{ll}
13 & 12 \\
23 & 18
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & 12 \\
5 & 18
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & 12 \\
0 & -42
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & -42
\end{array}\right)
$$

(b) Similarly, we get the sequence

$$
\begin{aligned}
\left(\begin{array}{ccc}
22 & 40 & 2 \\
24 & 56 & 23 \\
4 & 10 & 5
\end{array}\right) & \rightarrow\left(\begin{array}{ccc}
22 & 40 & 2 \\
4 & 6 & -2 \\
4 & 10 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
22 & 18 & 2 \\
4 & 2 & -2 \\
4 & 6 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 8 & 12 \\
4 & 2 & -2 \\
4 & 6 & 5
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 0 & 0 \\
4 & -14 & -26 \\
4 & -10 & -19
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -14 & -26 \\
0 & -10 & -19
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -19 & -10 \\
0 & -26 & -14
\end{array}\right) \rightarrow\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 6
\end{array}\right) \rightarrow\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 6
\end{array}\right)
\end{aligned}
$$

where in the second to last step we have multiplied on the right buy
the invertible matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 10 \\ 0 & -2 & -19\end{array}\right)$.
(c) Similarly, we get

$$
\left(\begin{array}{cc}
x^{2}+1 & x \\
x^{2}-1 & x+2
\end{array}\right) \rightarrow\left(\begin{array}{cc}
x & x^{2}+1 \\
x+2 & x^{2}-1
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & x-1 \\
-2 x-1 & 3 x+3
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & 2 x^{2}+x-2
\end{array}\right)
$$

where in the second to last step we have multiplied on the right by the invertible matrix $\left(\begin{array}{cc}-x & x+1 \\ 1 & -1\end{array}\right)$.
4) Fix an $n \times n$ matrix A and some $S \in \mathrm{GL}_{n}(\mathbb{F})$. Let $\varphi: M_{A} \rightarrow M_{S A S^{-1}}$ be given by $\varphi(v)=S v$.

- First, φ is invertible: Let $\psi: M_{S A S^{-1}} \rightarrow M_{A}$ be given by $\psi(v)=$ $S^{-1} v$. Then $(\varphi \circ \psi)(v)=S\left(S^{-1} v\right)=v$, and $(\psi \circ \varphi)(v)=S^{-1}(S v)=v$. Thus φ is a bijection.
- Now, we show that φ is an $\mathbb{F}[x]$-module homomorphism: If $v, w \in$ M_{A}, then $\varphi(v+w)=S(v+w)=S v+S w=\varphi(v)+\varphi(w)$ for any $v, w \in M_{A}$. Now let $f=\sum_{i=0}^{k} c_{i} x^{i} \in \mathbb{F}[x]$. Then for each i, if $v \in M_{A}$,

$$
\varphi\left(c_{i} x^{i} v\right)=\varphi\left(c_{i} A^{i} v\right)=S c_{i} A^{i} v=c_{i} S A^{i} v
$$

and

$$
c_{i} x^{i} \varphi(v)=c_{i} x^{i} S v=c_{i}\left(S A S^{-1}\right)^{i} S v=c_{i} S A^{i} S^{-1} S v=c_{i} S A^{i} v
$$

Since these are equal, and by additivity, we get $\varphi(f v)=f \varphi(v)$, so φ is an $\mathbb{F}[x]$-module homomorphism.

We conclude that $M_{S A S^{-1}} \cong M_{A}$ as $\mathbb{F}[x]$-modules.
5) Notice that $A=M \mathbb{Z}^{n}$. We can diagonalize M to get $M=S \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) S^{-1}$. Then $\operatorname{det}(M)=\lambda_{1} \cdots \lambda_{n}$. On the other hand, we have

$$
\left[\mathbb{Z}^{n}: A\right]=\left[\mathbb{Z}^{n}: M \mathbb{Z}^{n}\right]=\left|\mathbb{Z}^{n} / M \mathbb{Z}^{n}\right|
$$

But $\mathbb{Z}^{n} / M \mathbb{Z}^{n} \cong \mathbb{Z} / \lambda_{1} \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / \lambda_{n} \mathbb{Z}$, so $\left|\mathbb{Z}^{n} / M \mathbb{Z}^{n}\right|=\left|\lambda_{1} \cdots \lambda_{n}\right|=$ $|\operatorname{det} M|$.
6) R is a Noetherian ring by definition. Note that the R-module R^{n} is finitely generated by the standard basis elements. Then by Theorem 14.6.5, every submodule M of R^{n} is finitely generated.
7) Let R be a ring such that the given results hold. Let $I=\left(a_{1}, \ldots, a_{n}\right)$ be a finitely generated ideal in R. Consider the homomorphism $\varphi: R^{n} \rightarrow R$ given by $\varphi\left(r_{1}, \ldots, r_{n}\right)=a_{1} r_{1}+\cdots+a_{n} r_{n}$. By assumption, there is a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for R^{n} and $\left\{f_{1}\right\}$ for R such that $\varphi\left(e_{1}\right)=\delta_{1} f_{1}$ for some $\delta_{1} \in R$, and $\varphi\left(e_{i}\right)=0$ for $i>1$. Notice that $\operatorname{Im} \varphi=I$. Thus for any $a=a_{1} r_{1}+\cdots+a_{n} r_{n} \in I$, we have

$$
r_{1} \delta_{1} f_{1}=\varphi\left(r_{1}, \ldots, r_{n}\right)=a_{1} r_{1}+\cdots+a_{n} r_{n}=a
$$

so $I=\left(\delta_{1} f_{1}\right)$, so I is principal.

