Homework 5 Key

15.2.1) Let α be a complex root of the polynomial $x^{3}-3 x+4$. Then $\alpha^{2}+\alpha+1 \neq 0$, so $\alpha^{2}+\alpha+1$ is invertible with inverse $a+b \alpha+c \alpha^{2}$ for $a, b, c \in \mathbb{Q}$. Thus

$$
1=\left(1+\alpha+\alpha^{2}\right)\left(a+b \alpha+c \alpha^{2}\right)
$$

Expanding the right side and using the relation $\alpha^{3}=3 \alpha-4$, we get

$$
1=(a-4 b-4 c)+(a+4 b-c) \alpha+(a+b+4 c) \alpha^{2}
$$

and since $1, \alpha, \alpha^{2}$ are linearly independent over \mathbb{Q}, we get the system

$$
\begin{aligned}
a-4 b-4 c & =1 \\
a+4 b-c & =0 \\
a+b+4 c & =0 .
\end{aligned}
$$

Solving this, we get $(a, b, c)=\left(\frac{17}{49},-\frac{5}{49},-\frac{3}{49}\right)$. Thus

$$
\left(1+\alpha+\alpha^{2}\right)^{-1}=\frac{17}{49}-\frac{5}{49} \alpha-\frac{3}{49} \alpha^{2}
$$

15.2.2) Let $f(x)=\sum_{k=0}^{n}(-1)^{n-k} a_{k} x^{k}$ with $a_{n}=1$ be an irreducible polynomial over F with α a root of f in an extension field K. Then α is nonzero, and we must have $a_{0} \neq 0$ since f is irreducible. Thus

$$
\sum_{k=0}^{n}(-1)^{n-k} a_{k} \alpha^{k}=0
$$

so subtracting $(-1)^{n} a_{0}$, we get

$$
\alpha\left(\sum_{k=0}^{n-1}(-1)^{n+1-k} a_{k+1} \alpha^{k}\right)=(-1)^{n+1} a_{0}
$$

Dividing by $(-1)^{n+1} a_{0}$, we have

$$
\alpha\left(\sum_{k=0}^{n-1}(-1)^{k} \frac{a_{k+1}}{a_{0}} \alpha^{k}\right)=1,
$$

so

$$
\alpha^{-1}=\left(\sum_{k=0}^{n-1}(-1)^{k} \frac{a_{k+1}}{a_{0}} \alpha^{k}\right) .
$$

15.3.2) We have $f(x) \equiv x^{4}+x+1(\bmod 2)$ which is irreducible in $\mathbb{F}_{2}[x]$, so f is irreducible in $\mathbb{Q}[x]$. Then letting α be a root of f, α has degree 4 over \mathbb{Q}. Notice that $\sqrt[3]{2}$ is a root of $x^{3}-2$ as a polynomial in $\mathbb{Q}(\alpha)[x]$, and thus $\sqrt[3]{2}$ has degree 1,2 , or 3 over $\mathbb{Q}(\alpha)$. We have
$[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}]=[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}(\alpha)] \cdot[\mathbb{Q}(\alpha): \mathbb{Q}]=4[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}(\alpha)] \leq 4 \cdot 3=12$,
which implies that $4 \mid[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}]$ and $[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}] \leq 12$, so $[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}] \in\{1,4,8,12\}$. Moreover, we have
$[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}]=[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}(\sqrt[3]{2})] \cdot[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}(\sqrt[3]{2})]$,
so $3 \mid[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}]$ as well, which forces $[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}]=12$, and thus $[\mathbb{Q}(\alpha, \sqrt[3]{2}): \mathbb{Q}(\sqrt[3]{2})]=4$. Then the degree of α over $\mathbb{Q}(\sqrt[3]{2})$ is 4 , so f is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.
15.3.8) The algebraic numbers form a field, so are closed under addition and multiplication. Then

$$
(\alpha+\beta)^{2}-4 \alpha \beta=(\alpha-\beta)^{2}
$$

is an algebraic number. If γ^{2} is a algebraic number, then γ is algebraic as well, because γ^{2} is a root of a polynomial $f(x)$, so γ is a root of the polynomial $f\left(x^{2}\right)$. Thus $\alpha-\beta$ is algebraic, so

$$
\frac{(\alpha+\beta)+(\alpha-\beta)}{2}=\alpha
$$

is algebraic, and then $(\alpha+\beta)-\alpha=\beta$ is algebraic as well.
15.3.9) Let $a:=\operatorname{deg} f$ and $b:=\operatorname{deg} g$. Then

$$
[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]=[\mathbb{Q}(\alpha, \beta): \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}]=[\mathbb{Q}(\alpha, \beta): \mathbb{Q}(\beta)][\mathbb{Q}(\beta): \mathbb{Q}]
$$

so

$$
[\mathbb{Q}(\alpha, \beta): \mathbb{Q}]=a \cdot[K(\beta): K]=b \cdot[L(\alpha): L] .
$$

Then $f(x)$ is irreducible in $L[x]$ iff α has degree a over L iff $[L(\alpha): L]=a$ iff $[K(\beta): K]=b$ iff β has degree b over K iff $g(x)$ is irreducible in $K[x]$.
15.4.1) Let $\gamma=1+\alpha^{2}$. Then since $\alpha^{3}-\alpha=1$, we have

$$
(\gamma-1)(\gamma-2)^{2}=\left(\alpha^{2}\right)\left(\alpha^{2}-1\right)^{2}=\left(\alpha^{3}-\alpha\right)^{2}=1
$$

so γ is a root of $(x-1)(x-2)^{2}-1=x^{3}-5 x^{2}+8 x-5$. This polynomial is irreducible over \mathbb{Q} because it has no rational roots by the rational root test, and a cubic with no rational roots is irreducible.
15.4.2) Let $\alpha=\sqrt{3}+\sqrt{5}$.
(a) The elements $1, \sqrt{3}, \sqrt{5}, \sqrt{15}$ form a basis for $\mathbb{Q}(\sqrt{3}+\sqrt{5})=\mathbb{Q}(\sqrt{3}, \sqrt{5})$ over \mathbb{Q}, so α has degree 4 over \mathbb{Q}. Since $\alpha^{2}=8+2 \sqrt{15}$ and $\alpha^{4}=124+32 \sqrt{15}$, we get that α is a root of the irreducible polynomial $x^{4}-16 x^{2}+4$.
(b) Notice that α is a root of $x^{2}-2 \sqrt{5} x+2$, which is irreducible over $\mathbb{Q}(\sqrt{5})$, because otherwise $\sqrt{3}+\sqrt{5} \in \mathbb{Q}(\sqrt{5})$.
(c) Notice that $1, \sqrt{3}, \sqrt{5}, \sqrt{10}$ are linearly independent over $\mathbb{Q}(\sqrt{10})$, so α has degree 4 over $\mathbb{Q}(\sqrt{10})$. Thus the same polynomial from part (a) is irreducible over $\mathbb{Q}(\sqrt{10})$ with α a root.
(d) Notice that α is a root of $x^{2}-(8+2 \sqrt{15})$, which is irreducible over $\mathbb{Q}(\sqrt{15})$, because otherwise $\sqrt{3}+\sqrt{5} \in \mathbb{Q}(\sqrt{15})$.

