Homework 5 Key

15.2.1) Let α be a complex root of the polynomial $x^3 - 3x + 4$. Then $\alpha^2 + \alpha + 1 \neq 0$, so $\alpha^2 + \alpha + 1$ is invertible with inverse $a + b\alpha + c\alpha^2$ for $a, b, c \in \mathbb{Q}$. Thus

$$1 = (1 + \alpha + \alpha^2)(a + b\alpha + c\alpha^2)$$

Expanding the right side and using the relation $\alpha^3 = 3\alpha - 4$, we get

$$1 = (a - 4b - 4c) + (a + 4b - c)\alpha + (a + b + 4c)\alpha^{2},$$

and since $1, \alpha, \alpha^2$ are linearly independent over \mathbb{Q} , we get the system

$$a - 4b - 4c = 1$$
$$a + 4b - c = 0$$
$$a + b + 4c = 0.$$

Solving this, we get $(a, b, c) = \left(\frac{17}{49}, -\frac{5}{49}, -\frac{3}{49}\right)$. Thus

$$(1 + \alpha + \alpha^2)^{-1} = \frac{17}{49} - \frac{5}{49}\alpha - \frac{3}{49}\alpha^2.$$

15.2.2) Let $f(x) = \sum_{k=0}^{n} (-1)^{n-k} a_k x^k$ with $a_n = 1$ be an irreducible polynomial over F with α a root of f in an extension field K. Then α is nonzero, and we must have $a_0 \neq 0$ since f is irreducible. Thus

$$\sum_{k=0}^{n} (-1)^{n-k} a_k \alpha^k = 0,$$

so subtracting $(-1)^n a_0$, we get

$$\alpha\left(\sum_{k=0}^{n-1} (-1)^{n+1-k} a_{k+1} \alpha^k\right) = (-1)^{n+1} a_0.$$

Dividing by $(-1)^{n+1}a_0$, we have

$$\alpha\left(\sum_{k=0}^{n-1} (-1)^k \frac{a_{k+1}}{a_0} \alpha^k\right) = 1,$$

 \mathbf{SO}

$$\alpha^{-1} = \left(\sum_{k=0}^{n-1} (-1)^k \frac{a_{k+1}}{a_0} \alpha^k\right).$$

15.3.2) We have $f(x) \equiv x^4 + x + 1 \pmod{2}$ which is irreducible in $\mathbb{F}_2[x]$, so f is irreducible in $\mathbb{Q}[x]$. Then letting α be a root of f, α has degree 4 over \mathbb{Q} . Notice that $\sqrt[3]{2}$ is a root of $x^3 - 2$ as a polynomial in $\mathbb{Q}(\alpha)[x]$, and thus $\sqrt[3]{2}$ has degree 1, 2, or 3 over $\mathbb{Q}(\alpha)$. We have

 $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}] = [\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\alpha)] \cdot [\mathbb{Q}(\alpha) : \mathbb{Q}] = 4[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\alpha)] \le 4 \cdot 3 = 12,$

which implies that $4 \mid [\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}]$ and $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}] \leq 12$, so $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}] \in \{1, 4, 8, 12\}$. Moreover, we have

 $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}] = [\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})] \cdot [\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})],$

so $3 \mid [\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}]$ as well, which forces $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}] = 12$, and thus $[\mathbb{Q}(\alpha, \sqrt[3]{2}) : \mathbb{Q}(\sqrt[3]{2})] = 4$. Then the degree of α over $\mathbb{Q}(\sqrt[3]{2})$ is 4, so f is irreducible over $\mathbb{Q}(\sqrt[3]{2})$.

15.3.8) The algebraic numbers form a field, so are closed under addition and multiplication. Then

$$(\alpha + \beta)^2 - 4\alpha\beta = (\alpha - \beta)^2$$

is an algebraic number. If γ^2 is a algebraic number, then γ is algebraic as well, because γ^2 is a root of a polynomial f(x), so γ is a root of the polynomial $f(x^2)$. Thus $\alpha - \beta$ is algebraic, so

$$\frac{(\alpha+\beta)+(\alpha-\beta)}{2} = \alpha$$

is algebraic, and then $(\alpha + \beta) - \alpha = \beta$ is algebraic as well.

15.3.9) Let $a := \deg f$ and $b := \deg g$. Then

$$[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\alpha)][\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha,\beta):\mathbb{Q}(\beta)][\mathbb{Q}(\beta):\mathbb{Q}],$$

 \mathbf{SO}

$$[\mathbb{Q}(\alpha,\beta):\mathbb{Q}] = a \cdot [K(\beta):K] = b \cdot [L(\alpha):L].$$

Then f(x) is irreducible in L[x] iff α has degree a over L iff $[L(\alpha) : L] = a$ iff $[K(\beta) : K] = b$ iff β has degree b over K iff g(x) is irreducible in K[x].

15.4.1) Let $\gamma = 1 + \alpha^2$. Then since $\alpha^3 - \alpha = 1$, we have

$$(\gamma - 1)(\gamma - 2)^2 = (\alpha^2)(\alpha^2 - 1)^2 = (\alpha^3 - \alpha)^2 = 1,$$

so γ is a root of $(x-1)(x-2)^2 - 1 = x^3 - 5x^2 + 8x - 5$. This polynomial is irreducible over \mathbb{Q} because it has no rational roots by the rational root test, and a cubic with no rational roots is irreducible.

15.4.2) Let $\alpha = \sqrt{3} + \sqrt{5}$.

- (a) The elements $1, \sqrt{3}, \sqrt{5}, \sqrt{15}$ form a basis for $\mathbb{Q}(\sqrt{3}+\sqrt{5}) = \mathbb{Q}(\sqrt{3}, \sqrt{5})$ over \mathbb{Q} , so α has degree 4 over \mathbb{Q} . Since $\alpha^2 = 8 + 2\sqrt{15}$ and $\alpha^4 = 124 + 32\sqrt{15}$, we get that α is a root of the irreducible polynomial $x^4 - 16x^2 + 4$.
- (b) Notice that α is a root of $x^2 2\sqrt{5}x + 2$, which is irreducible over $\mathbb{Q}(\sqrt{5})$, because otherwise $\sqrt{3} + \sqrt{5} \in \mathbb{Q}(\sqrt{5})$.
- (c) Notice that 1, √3, √5, √10 are linearly independent over Q(√10), so α has degree 4 over Q(√10). Thus the same polynomial from part (a) is irreducible over Q(√10) with α a root.
- (d) Notice that α is a root of $x^2 (8 + 2\sqrt{15})$, which is irreducible over $\mathbb{Q}(\sqrt{15})$, because otherwise $\sqrt{3} + \sqrt{5} \in \mathbb{Q}(\sqrt{15})$.