
Homework 6 Key

15.6.1) Let F be a field of characteristic 0. Let f ∈ F [x] and let g be an irreducible
polynomial that divides f and f ′. Since g divides f , write f = gh for some
h ∈ F [x]. Applying the product rule,

f ′ = gh′ + g′h.

Since g divides gh′ and g divides f ′, it must be the case that g divides
g′h. Since F [x] is a UFD, either g divides g′ or g divides h. The former
is impossible since F has characteristic 0, so h = gp for some p ∈ F [x].
Thus f = g2p, so g2 divides f .
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15.6.2) (a) Let a ∈ F with F (
√
a) a quadratic extension. Then {1,

√
a} is a basis,

so for each z ∈ F (
√
a), z = x+ y

√
a. then z2 = (x2 + y2a) + 2xy

√
a.

In order to have z2 ∈ F we must have 2xy
√
a = 0, so x = 0 or y = 0.

Then the square elements are those of the form x2 or y2a for x, y ∈ F .

(b) Since Q has characteristic 0, an extension K is quadratic iff K =

Q(
√
a) for some a = p

q ∈ Q with
√
a ̸∈ Q. Notice that

√
p
q =

√
pq

q , so

Q(
√
a) = Q(

√
pq), and from this we conclude that the only quadratic

extensions of Q are those of the form Q(
√
d) for d ∈ Z, d not a square.
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15.6.3) Let α be a primitive nth root of unity that is in a quadratic extension
Q(

√
d). Then the minimal polynomial of has degree at most 2 over Q.

The nth cyclotomic polynomial is irreducible, so φ(n) ≤ 2, where φ is
Euler’s phi function. Then n ∈ {1, 2, 3, 4, 6}.

Every quadratic number field contains a root of unity for n = 1, 2 since
they all contain 1 and −1.

We also see that Q(
√
−1) contains i, which is a 4th root of unity.

We see that Q(
√
−3) contains −1+i

√
3

2
1+i

√
3

2 , primitive 3rd and 6th roots
of unity respectively. Thus n = 1, 2, 3, 4, 6 all work, and these are all such
n.
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15.7.1) F+
4 is a group with 4 elements, and there are exactly two such groups. F+

4

is not cyclic since α+ α = 0 for each α ∈ F+
4 , so it must be the case that

F+
4 is isomorphic to the Klein four-group.
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15.7.7) Let K be a finite field with q elements, so K is isomorphic to Fq. Then
every nonzero element of K is a root of the polynomial xq−1 − 1, so

xq−1 − 1 =
∏

α∈K×

(x− α).

Comparing coefficients, we see that −1 = (−1)q−1
∏

α∈K× α. When q
is odd, (−1)q−1 = 1, and when q is even, K has characteristic 2, so
(−1)q−1 = −1 = 1, and we are done.
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15.7.8) Let K = F2(α) and L = F2(β). We define a homomorphism φ : K → L
by α 7→ β + 1, is a homomorphism since

φ(α3 + α+ 1) = (β + 1)3 + (β + 1) + 1 = β3 + β2 + 1 = 0.

This map is an isomorphism because it is invertible. Any isomorphism
must map α to a root of g, and there are three distinct roots of g, so there
are three possible isomorphisms.
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15.7.9) Let F = Fp.

(a) Notice that F has order p, so there are p2 total monic polynomials
of degree 2 in F[x]. Such a polynomial is reducible if and only if it
is a product of 2 linear factors. There are p was to choose the same
linear factor twice and

(
p
2

)
ways to choose two different linear factors,

so p+
(
p
2

)
such polynomials. Thus there are p2− p−

(
p
2

)
=

(
p
2

)
monic

irreducible polynomials of degree 2.

(b) By 15.6.2, K is a field and the residue of x, call it α is a root of f
in K. α must have degree 2 over F , so K is a quadratic extension,
so [K : F ] = 2, so |K| = p2. Then K has basis {1, α}, meaning the
elements of K are of the form a + bα with a, b ∈ F . The degree of
an element over F must divide [K : F ] = 2, and if b ̸= 0, the element
is not in F , so such an element must have degree 2. Thus such an
element is a root of an irreducible quadratic polynomial in F[x].

(c) From (b), every element in K \ F is the root of an irreducible poly-
nomial of degree 2 in F [x]. There are p2 − p elements in K \ F , and
p2−p

2 monic irreducible polynomials of degree in F [x], each of which
accounts for two of these p2 − p elements, so every monic irreducible
polynomial of degree 2 has a root in K, and thus every irreudicble
polynomial of degree 2 does as well.

(d) Let g be another irreducible polynomial of degree 2 in F [x], and let
L = F [x]/(g). By part (c), f has a root β in L \ F . Then α and β
have the same irreducible polynomial over F , so the field extensions
F (α) and F (β) are isomorphic. Since F (α) ∼= K and F [β] ∼= L, we
get that K ∼= L.
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15.M.4) (a) Let p be an odd prime. Then F×
p is a cyclic group with size p−1 with

generator α, so the elements of α are precisely the elements αn for
0 ≤ α ≤ p− 1. Then the square elements are precisely the elements
of the form α2m for 0 ≤ m < p−1

2 , because for elements of the form
α2m+1, if there were a β with β2 = α, then β = αk for some k, so
2k = 2m+ 1, a contradiction. Thus p−1

2 elements of F×
p are squares,

which is exactly have of the elements.

Now assume that a, b are non-square elements. Then they are of the
form αn and αm respectively, for m,n odd. The product is then
ab = αm+n, and m+ n is even, so ab is square.

(b) The proof of part (a) holds verbatim if p is replaced by a power of p.

(c) Let q = 2n for n ≥ 1. Then F×
q is a cyclic group of order p− 1 with

generator α. Any element of the form α2m is clearly a square. For

any element of the form α2m+1, notice that (α
2m+q

2 )2 = α2m+1+q−1 =
α2m+1, so these elemlents are squares as well. Finally, 02 = 0, so 0
is a square.

(d) The irreducible polynomial for γ =
√
2 +

√
3 over Q is

p(x) = x4 − 10x2 + 1.

We show that this is reducible in Fp for each prime p. If 2 is a square,
then there is an element α with α2 = 2, so

x4 − 10x2 + 1 = (x2 − 1− 2αx)(x2 − 1 + 2αx).

If 3 is a square, then there is an element β with β2 = 3, and then

x4 − 10x2 + 1 = (x2 + 1− 2βx)(x2 + 1 + 2βx).

Finally, if 3 and 2 are not squares, then by part (a), their product 6
must be a square, so there is some δ with δ2 = 6, and then

x4 − 10x2 + 1 = (x2 − 5− 2δ)(x2 − 5 + 2δ).

In each case, p is reducible.
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