Homework 6 Key

15.6.1) Let F be a field of characteristic 0 . Let $f \in F[x]$ and let g be an irreducible polynomial that divides f and f^{\prime}. Since g divides f, write $f=g h$ for some $h \in F[x]$. Applying the product rule,

$$
f^{\prime}=g h^{\prime}+g^{\prime} h .
$$

Since g divides $g h^{\prime}$ and g divides f^{\prime}, it must be the case that g divides $g^{\prime} h$. Since $F[x]$ is a UFD, either g divides g^{\prime} or g divides h. The former is impossible since F has characteristic 0 , so $h=g p$ for some $p \in F[x]$. Thus $f=g^{2} p$, so g^{2} divides f.
15.6.2) (a) Let $a \in F$ with $F(\sqrt{a})$ a quadratic extension. Then $\{1, \sqrt{a}\}$ is a basis, so for each $z \in F(\sqrt{a}), z=x+y \sqrt{a}$. then $z^{2}=\left(x^{2}+y^{2} a\right)+2 x y \sqrt{a}$. In order to have $z^{2} \in F$ we must have $2 x y \sqrt{a}=0$, so $x=0$ or $y=0$. Then the square elements are those of the form x^{2} or $y^{2} a$ for $x, y \in F$.
(b) Since \mathbb{Q} has characteristic 0 , an extension K is quadratic iff $K=$ $\mathbb{Q}(\sqrt{a})$ for some $a=\frac{p}{q} \in \mathbb{Q}$ with $\sqrt{a} \notin \mathbb{Q}$. Notice that $\sqrt{\frac{p}{q}}=\frac{\sqrt{p q}}{q}$, so $\mathbb{Q}(\sqrt{a})=\mathbb{Q}(\sqrt{p q})$, and from this we conclude that the only quadratic extensions of \mathbb{Q} are those of the form $\mathbb{Q}(\sqrt{d})$ for $d \in \mathbb{Z}, d$ not a square.
15.6.3) Let α be a primitive nth root of unity that is in a quadratic extension $\mathbb{Q}(\sqrt{d})$. Then the minimal polynomial of has degree at most 2 over \mathbb{Q}. The nth cyclotomic polynomial is irreducible, so $\varphi(n) \leq 2$, where φ is Euler's phi function. Then $n \in\{1,2,3,4,6\}$.

Every quadratic number field contains a root of unity for $n=1,2$ since they all contain 1 and -1 .

We also see that $\mathbb{Q}(\sqrt{-1})$ contains i, which is a 4 th root of unity.
We see that $\mathbb{Q}(\sqrt{-3})$ contains $\frac{-1+i \sqrt{3}}{2} \frac{1+i \sqrt{3}}{2}$, primitive 3rd and 6 th roots of unity respectively. Thus $n=1,2,3,4,6$ all work, and these are all such n.
15.7.1) \mathbb{F}_{4}^{+}is a group with 4 elements, and there are exactly two such groups. \mathbb{F}_{4}^{+} is not cyclic since $\alpha+\alpha=0$ for each $\alpha \in \mathbb{F}_{4}^{+}$, so it must be the case that \mathbb{F}_{4}^{+}is isomorphic to the Klein four-group.
15.7.7) Let K be a finite field with q elements, so K is isomorphic to \mathbb{F}_{q}. Then every nonzero element of K is a root of the polynomial $x^{q-1}-1$, so

$$
x^{q-1}-1=\prod_{\alpha \in K^{\times}}(x-\alpha) .
$$

Comparing coefficients, we see that $-1=(-1)^{q-1} \prod_{\alpha \in K^{\times}} \alpha$. When q is odd, $(-1)^{q-1}=1$, and when q is even, K has characteristic 2 , so $(-1)^{q-1}=-1=1$, and we are done.
15.7.8) Let $K=\mathbb{F}_{2}(\alpha)$ and $L=\mathbb{F}_{2}(\beta)$. We define a homomorphism $\varphi: K \rightarrow L$ by $\alpha \mapsto \beta+1$, is a homomorphism since

$$
\varphi\left(\alpha^{3}+\alpha+1\right)=(\beta+1)^{3}+(\beta+1)+1=\beta^{3}+\beta^{2}+1=0
$$

This map is an isomorphism because it is invertible. Any isomorphism must map α to a root of g, and there are three distinct roots of g, so there are three possible isomorphisms.
15.7.9) Let $F=\mathbb{F}_{p}$.
(a) Notice that F has order p, so there are p^{2} total monic polynomials of degree 2 in $\mathbb{F}[x]$. Such a polynomial is reducible if and only if it is a product of 2 linear factors. There are p was to choose the same linear factor twice and $\binom{p}{2}$ ways to choose two different linear factors, so $p+\binom{p}{2}$ such polynomials. Thus there are $p^{2}-p-\binom{p}{2}=\binom{p}{2}$ monic irreducible polynomials of degree 2 .
(b) By $15.6 .2, K$ is a field and the residue of x, call it α is a root of f in $K . \alpha$ must have degree 2 over F, so K is a quadratic extension, so $[K: F]=2$, so $|K|=p^{2}$. Then K has basis $\{1, \alpha\}$, meaning the elements of K are of the form $a+b \alpha$ with $a, b \in F$. The degree of an element over F must divide $[K: F]=2$, and if $b \neq 0$, the element is not in F, so such an element must have degree 2. Thus such an element is a root of an irreducible quadratic polynomial in $\mathbb{F}[x]$.
(c) From (b), every element in $K \backslash F$ is the root of an irreducible polynomial of degree 2 in $F[x]$. There are $p^{2}-p$ elements in $K \backslash F$, and $\frac{p^{2}-p}{2}$ monic irreducible polynomials of degree in $F[x]$, each of which accounts for two of these $p^{2}-p$ elements, so every monic irreducible polynomial of degree 2 has a root in K, and thus every irreudicble polynomial of degree 2 does as well.
(d) Let g be another irreducible polynomial of degree 2 in $F[x]$, and let $L=F[x] /(g)$. By part (c), f has a root β in $L \backslash F$. Then α and β have the same irreducible polynomial over F, so the field extensions $F(\alpha)$ and $F(\beta)$ are isomorphic. Since $F(\alpha) \cong K$ and $F[\beta] \cong L$, we get that $K \cong L$.
15.M.4) (a) Let p be an odd prime. Then \mathbb{F}_{p}^{\times}is a cyclic group with size $p-1$ with generator α, so the elements of α are precisely the elements α^{n} for $0 \leq \alpha \leq p-1$. Then the square elements are precisely the elements of the form $\alpha^{2 m}$ for $0 \leq m<\frac{p-1}{2}$, because for elements of the form $\alpha^{2 m+1}$, if there were a β with $\beta^{2}=\alpha$, then $\beta=\alpha^{k}$ for some k, so $2 k=2 m+1$, a contradiction. Thus $\frac{p-1}{2}$ elements of \mathbb{F}_{p}^{\times}are squares, which is exactly have of the elements.

Now assume that a, b are non-square elements. Then they are of the form α^{n} and α^{m} respectively, for m, n odd. The product is then $a b=\alpha^{m+n}$, and $m+n$ is even, so $a b$ is square.
(b) The proof of part (a) holds verbatim if p is replaced by a power of p.
(c) Let $q=2^{n}$ for $n \geq 1$. Then \mathbb{F}_{q}^{\times}is a cyclic group of order $p-1$ with generator α. Any element of the form $\alpha^{2 m}$ is clearly a square. For any element of the form $\alpha^{2 m+1}$, notice that $\left(\alpha^{\frac{2 m+q}{2}}\right)^{2}=\alpha^{2 m+1+q-1}=$ $\alpha^{2 m+1}$, so these elemlents are squares as well. Finally, $0^{2}=0$, so 0 is a square.
(d) The irreducible polynomial for $\gamma=\sqrt{2}+\sqrt{3}$ over \mathbb{Q} is

$$
p(x)=x^{4}-10 x^{2}+1
$$

We show that this is reducible in \mathbb{F}_{p} for each prime p. If 2 is a square, then there is an element α with $\alpha^{2}=2$, so

$$
x^{4}-10 x^{2}+1=\left(x^{2}-1-2 \alpha x\right)\left(x^{2}-1+2 \alpha x\right) .
$$

If 3 is a square, then there is an element β with $\beta^{2}=3$, and then

$$
x^{4}-10 x^{2}+1=\left(x^{2}+1-2 \beta x\right)\left(x^{2}+1+2 \beta x\right) .
$$

Finally, if 3 and 2 are not squares, then by part (a), their product 6 must be a square, so there is some δ with $\delta^{2}=6$, and then

$$
x^{4}-10 x^{2}+1=\left(x^{2}-5-2 \delta\right)\left(x^{2}-5+2 \delta\right)
$$

In each case, p is reducible.

