Homework 7 Key

15.8.2) We would like to find each $\gamma \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$ such that $\mathbb{Q}(\gamma)=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Note that

$$
4=[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{2}, \sqrt{3}): \mathbb{Q}(\gamma)] \cdot[\mathbb{Q}(\gamma): \mathbb{Q}] .
$$

Since we would like $\mathbb{Q}(\gamma)=\mathbb{Q}(\sqrt{2}, \sqrt{3})$, we must have $[\mathbb{Q}(\sqrt{2}, \sqrt{3})$: $\mathbb{Q}(\gamma)]=1$, so $[\mathbb{Q}(\gamma): \mathbb{Q}]=4$, so γ has degree 4 over \mathbb{Q}. Now let $\gamma=q+a \sqrt{2}+b \sqrt{3}+c \sqrt{6}$ for $q, a, b, c \in \mathbb{Q}$. If at least two of a, b, c are nonzero, say $a=b=0$, then γ is a root of $f(x)=(x-q)^{2}-6 c^{2}$, and a similar polynomial exists in the cases where $b=c=0$ or $a=c=0$. In each case, γ has degree at most 2 over \mathbb{Q}, so these choices of γ do not work.

It remains to show that if at most one of a, b, c is 0 , then γ has degree 4 over \mathbb{Q}. The degree must be 1,2 , or 4 . Degree 1 is impossible since that would imply $\gamma \in \mathbb{Q}$. Now assume for a contradiction that γ has degree 2 over \mathbb{Q}. Note that $\operatorname{deg}(\mathbb{Q}(\gamma))=\operatorname{deg}(\mathbb{Q}(\gamma-q))$ which follows because q is rational, meaning that γ is a root of a polynomial $f(x)$ iff $\gamma-q$ is a root of the polynomial $f(x+q)$ of the same degree. Therefore we let $\gamma^{\prime}=\gamma-q$. Since $\operatorname{deg} \gamma^{\prime}=2$, there are $m, p \in \mathbb{Q}$ with $\gamma^{\prime 2}=m \gamma^{\prime}+p$, but

$$
\begin{aligned}
\gamma^{\prime 2} & =(a \sqrt{2}+b \sqrt{3}+c \sqrt{6})^{2} \\
& =\left(2 a^{2}+3 b^{2}+6 c^{2}\right)+6 b c \sqrt{2}+4 a c \sqrt{3}+2 a b \sqrt{6} .
\end{aligned}
$$

By our assumption this is equal to

$$
p+m a \sqrt{2}+m b \sqrt{3}+m c \sqrt{6} .
$$

If $m=0$, then $a b=a c=b c=0$, so at least 2 of a, b, c are 0 , a contradiction, so $m \neq 0$. Then $6 b c=m a$, so $a=\frac{6 b c}{m}$. Since $4 a c=m b$, we get $\frac{24 b c^{2}}{m}=m b$. If $b, c \neq 0$, then we get $24=\left(\frac{m}{c}\right)^{2}$, a contradiction since $\sqrt{24}$ is irrational. Using the other equations, if we assume $a, b \neq 0$ or $a, c \neq 0$, we reach similar contradictions. Since some two of a, b, c must be nonzero, we get a contradiction in any case, so γ^{\prime} does not have degree 2 , so γ does not have degree 2 . We conclude that γ has degree 4 , and we are done.
15.10.1) Let $A \subset \mathbb{C}$ be the set of all algebraic numbers. Let $f(x)=a_{n} x^{n}+\cdots+$ $a_{1} x+a_{0} \in A[x]$ and let $\alpha \in \mathbb{C}$ be a root of f. Then α is algebraic over $K:=\mathbb{Q}\left(a_{0}, \ldots, a_{n}\right)$, so $[K(\alpha): K]<\infty$. Then $[K(\alpha): \mathbb{Q}]=[K(\alpha):$ $K] \cdot[K: \mathbb{Q}]$, and since the right side is finite, the left side is as well. Thus α is in a finite extension of \mathbb{Q}, so α is algebraic over \mathbb{Q}, meaning $\alpha \in A$. We conclude that A is algebraically closed.
15.M.1) Let α be transcendental over F, let $K=F(\alpha)$, and let $\beta \in K \backslash F$. Then $\beta=\frac{f(\alpha)}{g(\alpha)}$, where $f, g \in \mathbb{F}[x]$ are not both constant, and f, g are coprime. Then α is a root of the polynomial $f-\beta g \in F(\beta)[x]$, because

$$
f(\alpha)-\beta g(\alpha)=f(\alpha)-\frac{f(\alpha)}{g(\alpha)} g(\alpha)=0
$$

Moreover, $f-\beta g$ is not constant since $f, g \in F[x]$ with g nonzero and $\beta \notin F$. Thus α is algebraic over $F(\beta)$.
4) Let K be a field and let $f \in K[x]$ be a monic polynomial of degree n. Let $K \subset L$ be a splitting field for f, i.e., an extension of the form $K\left(a_{1}, \ldots, a_{n}\right)$ with

$$
f(x)=\left(x-a_{1}\right) \cdots\left(x-a_{n}\right)
$$

We prove that $[L: K] \mid n$! by strong induction on n :

- Base Case: When $n=1, f$ is linear, so $f=x-a_{1}$, and we must have $a_{1} \in K$. Then $L=K\left(a_{1}\right)=K$, so $[L: K]=1 \mid 1$!.
- Now assume that for a fixed n, any polynomial in $K[x]$ with degree $m \leq n$ has a splitting field F with $[F: K] \mid m$!, and let f have degree $n+1$. Let $L=K\left(a_{1}, \ldots, a_{n+1}\right)$ be a splitting field for f. We have two cases:
- Case 1: f is irreducible in K. Let a_{1} be one of the roots of f. Then $\left[K\left(a_{1}\right): K\right]=n+1$ since f has degree $n+1$, so

$$
[L: K]=\left[L: K\left(a_{1}\right)\right] \cdot\left[K\left(a_{1}\right): K\right]=(n+1)\left[L: K\left(a_{1}\right)\right]
$$

Now $f=g\left(x-a_{1}\right)$ for some $g \in K\left(a_{1}\right)[x]$ with degree n with splitting field $K\left(a_{1}\right)\left(a_{2}, \ldots, a_{n+1}\right)$, which is precisely L, so by the induction hypothesis, $\left[L: K\left(a_{1}\right)\right] \mid n$!. Then

$$
[L: K]=(n+1)\left[L: K\left(a_{1}\right)\right] \mid(n+1) n!=(n+1)!.
$$

- Case 2: f is reducible in K. Let $f=g h$ with neither of g, h constant. Let $G \subset L$ be the splitting field for g over K, so L is the splitting field for h over G. Let $a:=\operatorname{deg} g \leq n$ and $b:=\operatorname{deg} h \leq n$. Then by the induction hypothesis, $[G: K] \mid a!$ and $[L: G] \mid b!$. Notice that $a+b=n+1$, and $(a+b)!=a!b!\binom{a+b}{a}$, so

$$
[L: K]=[L: G] \cdot[G: K]|a!b!|(a+b)!=(n+1)!
$$

so $[L: K] \mid(n+1)$!.
By strong induction we are done.
5) Let F be a field of characteristic p and let $F \subset K$ be a finite field extension such that p does not divide $[K: F]$. Note that K is separable iff the minimal polynomial f for α is separable for each $\alpha \in K$, which holds iff $f^{\prime} \neq 0$ for each such f.

Let $\alpha \in K$. Let f be the minimal polynomial of α, so f has degree $n:=$ $[F(\alpha): F] \geq 1$. Since $p \nmid[K: F]=[K: F(\alpha)] \cdot[F(\alpha): F]=n[K: F(\alpha)]$, it is also the case that $p \nmid n$. But since f is degree n and monic, the coefficient of x^{n-1} for f^{\prime} is n, and since $n \nmid p, n$ is nonzero, so $f^{\prime} \neq 0$. Thus f is separable, and we conclude that K is a separable field extension of F.
6) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a field automorphism.
(a) We prove this in steps:

- By definition, $f(0)=0$ and $f(1)=1$.
- For any integer $n \geq 1$,

$$
f(n)=f(1+\cdots+1)=f(1)+\cdots+f(1)=1+\cdots+1=n
$$

- For $\frac{n}{m}$ with $n, m>0$ both integers, we have

$$
m f\left(\frac{n}{m}\right)=f\left(\frac{n}{m}\right)+\cdots+f\left(\frac{n}{m}\right)=f\left(\frac{n}{m}+\cdots+\frac{n}{m}\right)=f(n)=n
$$

from which we conclude $f\left(\frac{n}{m}\right)=\frac{n}{m}$.

- We have $0=f(0)=f(1-1)=f(1)+f(-1)=1+f(-1)$, so $f(-1)=-1$. For $q \in \mathbb{Q}$ with $q<0$, we have $-q>0$, so $f(q)=f(-1 \cdot-q)=f(-1) f(-q)=-1 \cdot(-q)=q$.
We conclude that $f(q)=q$ for all $q \in \mathbb{Q}$.
(b) If $x>0$, then $\sqrt{x} \in \mathbb{R}$ is positive as well. So $f(x)=f\left((\sqrt{x})^{2}\right)=$ $f(\sqrt{x})^{2}>0$. We now prove that f is increasing: If $x>y$, then $x-y>0$, so $f(x-y)=f(x)-f(y)>0$, so $f(x)>f(y)$.
(c) Assume that $|x-y|<\frac{1}{n}$ for some $n \geq 1$. Then $-\frac{1}{n}<x-y<\frac{1}{n}$, so by parts (a) and (b), $\frac{1}{n}^{n}<f(x)-f(y)<\frac{1}{n}$, so $|f(x)-f(y)|<\frac{1}{n}$.

Now let $\varepsilon>0$. Let $n \in \mathbb{N}$ be large enough so that $\frac{1}{n}<\varepsilon$. Choose $\delta=\frac{1}{n}$. If $|x-y|<\delta=\frac{1}{n}$, then by the above, $|f(x)-f(y)|<\frac{1}{n}<\varepsilon$. Thus f is continuous.
(d) Since the rationals are dense in the reals, and since f is continuous with $f(x)=x$ for all $x \in \mathbb{Q}$, it must be the case that $f(x)=x$ for all $x \in \mathbb{R}$.

