Homework 7 Key

15.8.2) We would like to find each vy € Q(v/2,/3) such that Q(v) = Q(v/2,V3).
Note that

4=[Q(v2,v3): Q] = [Q(v2,v3) : Q)] - [Q(y) : Q).

Since we would like Q(v) = Q(v/2,v/3), we must have [Q(v/2,v3) :
Q)] = 1, so [Q(y) : Q] = 4, so v has degree 4 over Q. Now let
v = q+av2+ b/3 4+ ¢V/6 for q,a,b,c € Q. If at least two of a,b,c
are nonzero, say a = b = 0, then v is a root of f(z) = (x — ¢)? — 6¢?, and
a similar polynomial exists in the cases where b=c=0ora=c=0. In
each case, v has degree at most 2 over Q, so these choices of v do not work.

It remains to show that if at most one of a, b, c is 0, then v has degree 4
over Q. The degree must be 1,2, or 4. Degree 1 is impossible since that
would imply v € Q. Now assume for a contradiction that v has degree 2
over Q. Note that deg(Q(v)) = deg(Q(y — ¢)) which follows because ¢ is
rational, meaning that + is a root of a polynomial f(z) iff v — ¢ is a root of
the polynomial f(z + ¢) of the same degree. Therefore we let v/ = v — gq.
Since degy’ = 2, there are m,p € Q with /2 = my’ + p, but

72 = (aV2+ bV3 + cV6)?
= (242 + 3b% + 6¢%) + 6bcv/2 + dacV/3 + 2abV/6.

By our assumption this is equal to
p + mav2 + mbv3 + meVe.

If m = 0, then ab = ac = bc = 0, so at least 2 of a,b,c are 0, a contra-
diction, so m # 0. Then 6bc = ma, so a = %bc. Since 4ac = mb, we get
24%2 =mb. If b,c # 0, then we get 24 = (%)2, a contradiction since v/24
is irrational. Using the other equations, if we assume a,b # 0 or a, ¢ # 0,
we reach similar contradictions. Since some two of a, b, ¢ must be nonzero,
we get a contradiction in any case, so 4" does not have degree 2, so v does

not have degree 2. We conclude that + has degree 4, and we are done.



15.10.1) Let A C C be the set of all algebraic numbers. Let f(z) = apa™ +--- +
a1z + ag € Alz] and let o € C be a root of f. Then « is algebraic over
K := Q(ag,...,an), so [K(a) : K] < co. Then [K(«a) : Q] = [K(«) :
K]-[K : Q], and since the right side is finite, the left side is as well. Thus
« is in a finite extension of Q, so « is algebraic over QQ, meaning o € A.
We conclude that A is algebraically closed.



15.M.1) Let « be transcendental over F, let K = F(«a), and let 5 € K \ F. Then
8 o) where f,g € F[z] are not both constant, and f, g are coprime.

Th_engg;)i; a root of the polynomial f — B¢ € F(8)[x], because
fla) = gla) = f(e) ~ £ gta) <o

Moreover, f — Bg is not constant since f,g € F[z] with g nonzero and
B & F. Thus « is algebraic over F(3).



4) Let K be a field and let f € K[z] be a monic polynomial of degree n. Let
K C L be asplitting field for f, i.e., an extension of the form K(ay,...,a,)
with

f@) = (z—a1)--(z —an).
We prove that [L : K] | n! by strong induction on n:
e Base Case: When n =1, f is linear, so f = x — a1, and we must have
a1 € K. Then L=K(a;)=K,so [L: K|]=1]1.

e Now assume that for a fixed n, any polynomial in K[z] with degree
m < n has a splitting field F with [F' : K] | m!, and let f have degree
n+1. Let L = K(as,...,a,+1) be a splitting field for f. We have
two cases:

— Case 1: f is irreducible in K. Let a; be one of the roots of f.
Then [K(a1) : K] =n+ 1 since f has degree n + 1, so

[L:K]=[L:K(a)] [K(a1): K]=(n+1[L: K(a1)]

Now f = g(x — ay) for some g € K(ay)[z] with degree n with
splitting field K(a1)(ag,...,an+1), which is precisely L, so by
the induction hypothesis, [L : K(a;)] | n!. Then

[L:K]=(n+1)L:K(a)]| (n+1n! = (n+ 1)L

— Case 2: f is reducible in K. Let f = gh with neither of g, h
constant. Let G C L be the splitting field for g over K, so
L is the splitting field for h over G. Let a := degg < m and
b := degh < n. Then by the induction hypothesis, [G : K] | a!
and [L : G] | bl. Notice that a+b = n+1, and (a+b)! = alb!(*?),
SO

[L:K]=[L:G] [G:K]|abl|(a+b)!=(n+1),

so[L:K]|(n+ 1)

By strong induction we are done.



5) Let F be a field of characteristic p and let F' C K be a finite field exten-
sion such that p does not divide [K : F]. Note that K is separable iff the
minimal polynomial f for « is separable for each a € K, which holds iff
/' # 0 for each such f.

Let o € K. Let f be the minimal polynomial of «, so f has degree n :=
[F(a) : F] > 1. Since p{ [K : F] = [K : F(a)] - [F(a) : F] =n|[K : F(a)],
it is also the case that p { n. But since f is degree n and monic, the
coefficient of #"~! for f’ is n, and since n { p, n is nonzero, so f’' # 0.
Thus f is separable, and we conclude that K is a separable field extension
of F.



6) Let f: R — R be a field automorphism.

(a) We prove this in steps:
e By definition, f(0) =0 and f(1) = 1.
e For any integer n > 1,

F) = f(l+- 4 1) = f() 4+ f() =14+ 1=n.

e For  with n,m > 0 both integers, we have

m

i (2) =1 (2) o 1(2) =1 (o 2) =10 =
from which we conclude f (%) =
e We have 0 = f(0) = f(1—1) = f(1) + f(-1) = 1+ f(-1),

so f(—1) = —1. For ¢ € Q with ¢ < 0, we have —¢ > 0, so
) =f(=1-=q) = f(=D)f(=q) = =1-(=q) = ¢
We conclude that f(g) = ¢ for all g € Q.

(b) If & > 0, then /2 € R is positive as well. So f(z) = f((v/)?) =
f(v/x)? > 0. We now prove that f is increasing: If = > y, then
x—y>0,s0 fx—y)=fz) = f(y) > 0,50 f(x) > f(y)

(c) Assume that [z —y| < 1 for somen > 1. Then -1 <z —y <1 so
by parts (a) and (b), 1< f(z) = f(y) < L, 50 |f(2) — f@y)| < L.

Now let € > 0. Let n € N be large enough so that % < &. Choose
§=2L11If [z —y| <6 =21 then by the above, |f(z) — f(y)| <  <e.
Thus f is continuous.

(d) Since the rationals are dense in the reals, and since f is continuous
with f(x) = z for all z € Q, it must be the case that f(x) = z for all

r €R.



