
Homework 7 Key

15.8.2) We would like to find each γ ∈ Q(
√
2,
√
3) such that Q(γ) = Q(

√
2,
√
3).

Note that

4 = [Q(
√
2,
√
3) : Q] = [Q(

√
2,
√
3) : Q(γ)] · [Q(γ) : Q].

Since we would like Q(γ) = Q(
√
2,
√
3), we must have [Q(

√
2,
√
3) :

Q(γ)] = 1, so [Q(γ) : Q] = 4, so γ has degree 4 over Q. Now let
γ = q + a

√
2 + b

√
3 + c

√
6 for q, a, b, c ∈ Q. If at least two of a, b, c

are nonzero, say a = b = 0, then γ is a root of f(x) = (x− q)2 − 6c2, and
a similar polynomial exists in the cases where b = c = 0 or a = c = 0. In
each case, γ has degree at most 2 over Q, so these choices of γ do not work.

It remains to show that if at most one of a, b, c is 0, then γ has degree 4
over Q. The degree must be 1, 2, or 4. Degree 1 is impossible since that
would imply γ ∈ Q. Now assume for a contradiction that γ has degree 2
over Q. Note that deg(Q(γ)) = deg(Q(γ − q)) which follows because q is
rational, meaning that γ is a root of a polynomial f(x) iff γ−q is a root of
the polynomial f(x+ q) of the same degree. Therefore we let γ′ = γ − q.
Since deg γ′ = 2, there are m, p ∈ Q with γ′2 = mγ′ + p, but

γ′2 = (a
√
2 + b

√
3 + c

√
6)2

= (2a2 + 3b2 + 6c2) + 6bc
√
2 + 4ac

√
3 + 2ab

√
6.

By our assumption this is equal to

p+ma
√
2 +mb

√
3 +mc

√
6.

If m = 0, then ab = ac = bc = 0, so at least 2 of a, b, c are 0, a contra-
diction, so m ̸= 0. Then 6bc = ma, so a = 6bc

m . Since 4ac = mb, we get
24bc2

m = mb. If b, c ̸= 0, then we get 24 =
(
m
c

)2
, a contradiction since

√
24

is irrational. Using the other equations, if we assume a, b ̸= 0 or a, c ̸= 0,
we reach similar contradictions. Since some two of a, b, c must be nonzero,
we get a contradiction in any case, so γ′ does not have degree 2, so γ does
not have degree 2. We conclude that γ has degree 4, and we are done.
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15.10.1) Let A ⊂ C be the set of all algebraic numbers. Let f(x) = anx
n + · · · +

a1x + a0 ∈ A[x] and let α ∈ C be a root of f . Then α is algebraic over
K := Q(a0, . . . , an), so [K(α) : K] < ∞. Then [K(α) : Q] = [K(α) :
K] · [K : Q], and since the right side is finite, the left side is as well. Thus
α is in a finite extension of Q, so α is algebraic over Q, meaning α ∈ A.
We conclude that A is algebraically closed.
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15.M.1) Let α be transcendental over F , let K = F (α), and let β ∈ K \ F . Then

β = f(α)
g(α) , where f, g ∈ F[x] are not both constant, and f, g are coprime.

Then α is a root of the polynomial f − βg ∈ F (β)[x], because

f(α)− βg(α) = f(α)− f(α)

g(α)
g(α) = 0.

Moreover, f − βg is not constant since f, g ∈ F [x] with g nonzero and
β ̸∈ F . Thus α is algebraic over F (β).

3



4) Let K be a field and let f ∈ K[x] be a monic polynomial of degree n. Let
K ⊂ L be a splitting field for f , i.e., an extension of the formK(a1, . . . , an)
with

f(x) = (x− a1) · · · (x− an).

We prove that [L : K] | n! by strong induction on n:

• Base Case: When n = 1, f is linear, so f = x−a1, and we must have
a1 ∈ K. Then L = K(a1) = K, so [L : K] = 1 | 1!.

• Now assume that for a fixed n, any polynomial in K[x] with degree
m ≤ n has a splitting field F with [F : K] | m!, and let f have degree
n + 1. Let L = K(a1, . . . , an+1) be a splitting field for f . We have
two cases:

– Case 1: f is irreducible in K. Let a1 be one of the roots of f .
Then [K(a1) : K] = n+ 1 since f has degree n+ 1, so

[L : K] = [L : K(a1)] · [K(a1) : K] = (n+ 1)[L : K(a1)].

Now f = g(x − a1) for some g ∈ K(a1)[x] with degree n with
splitting field K(a1)(a2, . . . , an+1), which is precisely L, so by
the induction hypothesis, [L : K(a1)] | n!. Then

[L : K] = (n+ 1)[L : K(a1)] | (n+ 1)n! = (n+ 1)!.

– Case 2: f is reducible in K. Let f = gh with neither of g, h
constant. Let G ⊂ L be the splitting field for g over K, so
L is the splitting field for h over G. Let a := deg g ≤ n and
b := deg h ≤ n. Then by the induction hypothesis, [G : K] | a!
and [L : G] | b!. Notice that a+b = n+1, and (a+b)! = a!b!

(
a+b
a

)
,

so

[L : K] = [L : G] · [G : K] | a!b! | (a+ b)! = (n+ 1)!,

so [L : K] | (n+ 1)!.

By strong induction we are done.
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5) Let F be a field of characteristic p and let F ⊂ K be a finite field exten-
sion such that p does not divide [K : F ]. Note that K is separable iff the
minimal polynomial f for α is separable for each α ∈ K, which holds iff
f ′ ̸= 0 for each such f .

Let α ∈ K. Let f be the minimal polynomial of α, so f has degree n :=
[F (α) : F ] ≥ 1. Since p ∤ [K : F ] = [K : F (α)] · [F (α) : F ] = n[K : F (α)],
it is also the case that p ∤ n. But since f is degree n and monic, the
coefficient of xn−1 for f ′ is n, and since n ∤ p, n is nonzero, so f ′ ̸= 0.
Thus f is separable, and we conclude that K is a separable field extension
of F .
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6) Let f : R → R be a field automorphism.

(a) We prove this in steps:

• By definition, f(0) = 0 and f(1) = 1.

• For any integer n ≥ 1,

f(n) = f(1 + · · ·+ 1) = f(1) + · · ·+ f(1) = 1 + · · ·+ 1 = n.

• For n
m with n,m > 0 both integers, we have

mf
( n

m

)
= f

( n

m

)
+ · · ·+ f

( n

m

)
= f

( n

m
+ · · ·+ n

m

)
= f(n) = n,

from which we conclude f
(
n
m

)
= n

m .

• We have 0 = f(0) = f(1 − 1) = f(1) + f(−1) = 1 + f(−1),
so f(−1) = −1. For q ∈ Q with q < 0, we have −q > 0, so
f(q) = f(−1 · −q) = f(−1)f(−q) = −1 · (−q) = q.

We conclude that f(q) = q for all q ∈ Q.

(b) If x > 0, then
√
x ∈ R is positive as well. So f(x) = f((

√
x)2) =

f(
√
x)2 > 0. We now prove that f is increasing: If x > y, then

x− y > 0, so f(x− y) = f(x)− f(y) > 0, so f(x) > f(y).

(c) Assume that |x− y| < 1
n for some n ≥ 1. Then − 1

n < x− y < 1
n , so

by parts (a) and (b), 1
n < f(x)− f(y) < 1

n , so |f(x)− f(y)| < 1
n .

Now let ε > 0. Let n ∈ N be large enough so that 1
n < ε. Choose

δ = 1
n . If |x− y| < δ = 1

n , then by the above, |f(x)− f(y)| < 1
n < ε.

Thus f is continuous.

(d) Since the rationals are dense in the reals, and since f is continuous
with f(x) = x for all x ∈ Q, it must be the case that f(x) = x for all
x ∈ R.
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