Math 30820: Honors Algebra IV Problem Set 8

1. Artin, Chapter 16, Problem 1.1.
2. Let K be a field and let $f(x) \in K[x]$ be a monic degree n polynomial. Assume that $K \subset L$ is a field extension such that L contains all the roots $\alpha_{1}, \ldots, \alpha_{n}$ of f, counted with multiplicity. Prove that the discriminant of $f(x)$ satisfies the identity

$$
\Delta(f)=(-1)^{\binom{n}{2}} \prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right)
$$

3. Let $f(x)=x^{5}+p x+q$, with p, q elements of a field K. Prove that the discriminant of f satisfies $\Delta(f)=5^{5} q^{4}+4^{4} p^{5}$.
4. Say that a field extension $K \subset L$ is a normal extension if all irreducible polynomials $f(x) \in K[x]$ which have a root in L split into linear factors in L. If $K \subset L$ is finite, we proved in class that this holds if and only if $K \subset L$ is the splitting field of some polynomial. Let $\alpha \in \mathbb{R}$ satisfy $\alpha^{4}=5$. Question: Are the following extensions normal or not?
(a) $\mathbb{Q} \subset \mathbb{Q}\left(i \alpha^{2}\right)$
(b) $\mathbb{Q}\left(i \alpha^{2}\right) \subset \mathbb{Q}(\alpha+i \alpha)$. You should also justify that this is indeed a field extension.
(c) $\mathbb{Q} \subset \mathbb{Q}(\alpha+i \alpha)$.
5. Artin, Chapter 16, Problem 3.2
6. Artin, Chapter 16, Problem 4.1
