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CHAPTER 11. The Künneth formula for homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
11.1. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

CHAPTER 12. Construction of homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
12.1. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Part 2. Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

CHAPTER 13. Appendix: more on the topology of CW complexes . . . . . . . . . . . . . . . . . . 65

CHAPTER 14. Appendix: Spines of noncompact manifolds . . . . . . . . . . . . . . . . . . . . . . . . 67

CHAPTER 15. Appendix: Tor and Ext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

CHAPTER 16. Appendix: cofibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Part 1

Homology





CHAPTER 1

A geometric introduction to H0 and H1

The homology groups of a space X are abelian groups Hk(X) that encode subtle information
about the d-dimensional “holes” in X. Before we introduce the formidable technical apparatus
needed to discuss homology in general, we give an introduction to the geometric meaning of H0(X)
and H1(X). The definitions we give for these group do not generalize in a straightward way to the
higher homology groups, but the patterns they suggest give an idea about what to expect.

1.1. Zeroth homology

We start with H0(X).

1.1.1. Intuitive description. Elements of H0(X) can be thought of as formal Z-linear combi-
nations of points in X:

z = λ1p1 + · · ·+ λrpr with λ1, . . . , λr ∈ Z and p1, . . . , pr ∈ X.

Moving the points pi around does not change the element of H0(X) that z represents. If two points
collide, their coefficients add:

λ1
λ3

λ2
λ4

collide λ1

λ2

λ3+λ4

If a coefficient λi vanishes, then the point disappears.

1.1.2. Formal definition. To make this precise, we introduce the following notation:

Notation 1.1.1. For a set S, we write Z⟨S⟩ for the free abelian group consisting of formal
Z-linear combinations of elements of S. □

Remark 1.1.2. We emphasize that even if S has some other structure (e.g., a topology) the
abelian group Z⟨S⟩ only uses the structure of S as a set. □

The following makes the above intuitive description precise.

Definition 1.1.3. Let X be a space. Then H0(X) = Z⟨X⟩/R, where R is the subgroup of Z⟨X⟩
generated by the following relations:

• for a continuous map f : [0, 1] → X, we have a relation f(1)− f(0) ∈ R.

For z ∈ Z⟨X⟩, we will write [z] for the associated element of H0(X). The relation f(1)− f(0) ∈ R
above therefore implies that [f(1)] = [f(0)]. □

Remark 1.1.4. The topology on X plays no role in Z⟨X⟩, but is used to define the relations of
H0(X), which involve continuous maps f : [0, 1] → X. □

1.1.3. Topological meaning. It is not hard to determine the topological meaning of H0(X):

Lemma 1.1.5. For a space X, the abelian group H0(X) is isomorphic to the free abelian group
with basis the path-components of X.

3



4 1. A GEOMETRIC INTRODUCTION TO H0 AND H1

Proof. If the path components of X are {Xα}α∈I , then it is immediate from the definition that

H0(X) =
⊕
α∈I

H0(Xα).

This reduces us to showing that if X is path-connected, then H0(X) ∼= Z. Define a homomorphism
ϵ : Z⟨X⟩ → Z via the formula

ϵ(λ1p1 + · · ·+ λrpr) = λ1 + · · ·+ λr for λ1, . . . , λr ∈ Z and p1, . . . , pr ∈ X.

The homomorphism ϵ is surjective, and its kernel is generated by elements of the form p− p′ with
p, p′ ∈ X. For such a p−p′, since X is path-connected we can find a map f : [0, 1] → X with f(1) = p
and f(0) = p′. The corresponding relation in H0(X) shows that [p − p′] = 0. We conclude that ϵ
factors through an isomorphism H1(X) ∼= Z. □

1.2. First homology

We now turn to H1(X).

1.2.1. Intuitive description. A finite collection of points is a compact 0-manifold. For H1(X),
we go up a dimension. A compact 1-manifold is a disjoint union of circles. To avoid pathologies we
will not insist that our circles in X be embedded, so elements of H1(X) will be represented by formal
Z-linear combinations of maps of circles into X:

z = λ1γ1 + · · ·+ λrγr with λ1, . . . , λr ∈ Z and γ1, . . . , γr : S
1 → X.

See here:

λ1

λ2

λ3
λ4

λ5

Each loop in this picture has an orientation coming from its parameterization γi : S
1 → X.

Just like for H0(X), homotoping the γi does not change the element of H1(X) represented by
z, and if two γi are homotoped to be equal their coefficients add. This implies that the knotting
and linking in the above figure is irrelevant since we can homotope the γi through each other and
themselves. However, homotopies do not exhaust the equivalence relation needed for H1(X) since we
also have to account for more complicated interactions between the loops.

1.2.2. Formal definition. Recall that for H0(X) the relations come from maps of [0, 1] into X.
The space [0, 1] is a compact oriented 1-manifold with boundary. For H1(X), we replace [0, 1] with a
compact oriented 2-manifold with boundary. Here is a formal definition:

Definition 1.2.1. Let X be a space. Let L(X) be the set of continuous maps γ : S1 → X. Then
H1(X) = Z⟨L(X)⟩/R, where R is the subgroup of Z⟨L(X)⟩ generated by the following relations:

• for a compact oriented surface S with oriented boundary components ∂1, . . . , ∂r ∼= S1 and
a continuous map f : S → X, we have a relation

f |∂1 + · · ·+ f |∂r ∈ R.

For z ∈ Z⟨L(X)⟩, we will write [z] for the associated element of H1(X). □

1.2.3. Moves on homology classes. To clarify this, we describe some special cases of the
relations on H1(X). These should be thought of as “moves” on collections of loops in X.

1. If γ : S1 → X is a loop and γ : S1 → X is γ with the reversed orientation, then [γ] = −[γ].
Indeed, let S = S1 × [0, 1] be a cylinder and let f : S → X be defined by f(x, t) = γ(x).
Then since in the above definition we take oriented boundary components the map f
witnesses the relation [γ + γ] = 0.

2. If γ1, γ2 : S
1 → X are homotopic loops, then [γ1] = [γ2]. Indeed, let S = S1 × [0, 1] and let

f : S → X be a homotopy from γ1 to γ2. Then f witnesses the fact that [γ1 + γ2] = 0, so
[γ1 − γ2] = 0.
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3. If γ : S1 → X is null-homotopic, then γ extends to a map of D2. Since D2 has only one
boundary component, this implies that [γ] = 0.

4. Using a relation coming from a 3-holed sphere S, two loops in X can merge into a single
loop as in the following figure showing two red loops merging to form a blue one:

f

X

S

∂1

∂2 ∂3

Note that as we have oriented them the oriented boundary of S is ∂1 ⊔ ∂2 ⊔ ∂3, so what the
above figure shows is that [f |∂1 + f |∂2

+ f |∂3
] = 0, so [f |∂1 ] = [f |∂2 ] + [f |∂3 ]. This ensures

that as the loops f |∂2
and f |∂3

merge to form f |∂1
, their orientations match up.

Recall that our loops γ : S1 → X need not be embedded. A special case of the fourth relation
above is that if γ : S1 → X is a loop with finitely many self-intersections and γ1, . . . , γk : S

1 → X
are the loops obtained by resolving these self-intersections as in

then [γ] = [γ1] + · · ·+ [γk]. Here for ease of understanding we move the intersections off of each other,
but in an arbitrary X this might not be possible.

Example 1.2.2. For a genus 2 surface Σ2, the following is an example of applying these moves
to an element of H1(Σ2):

In this figure, the coefficient of each loop is +1. □

1.2.4. Topological meaning. The following relates H1(X) to the fundamental group:

Theorem 1.2.3. Let (X, p) be a path-connected based space. Then

H1(X) ∼= (π1(X, p0))
ab,

where ab means we are taking the abelianization of the fundamental group.

Proof. Elements of π1(X, p0) are represented by based loops γ : (S1, 1) → (X, p0). Define a set
map ϕ : π1(X, p0) → H1(X) by letting ϕ take γ to1 [γ]. Using the fourth move discussed above, we
see that ϕ is a homomorphism. Since addition in H1(X) is abelian, ϕ factors through a map

Φ: (π1(X, p0))
ab → H1(X).

Since X is path-connected, every γ : S1 → X can be homotoped to a based loop γ : (S1, 1) → (X, p0),
so Φ is surjective.

1Here we are avoiding our usual convention of letting [γ] denote an element of π1(X, p0) to avoid a clash of

notation.



6 1. A GEOMETRIC INTRODUCTION TO H0 AND H1

We must prove that Φ is injective. Consider a based loop γ : (S1, 1) → (X, p0) representing an
element of ker(ϕ). We must prove that γ vanishes in the abelianization of π1(X, p0). Since [γ] = 0,
by definition there exist compact oriented surfaces S1, . . . , Sk and maps fi : Si → X such that the
sum of the relations corresponding to the fi witnesses the fact that [γ] = 0.

Each Si might have multiple boundary component, but aside from one boundary component
corresponding to γ all of these must cancel out when we add up the corresponding relations. We
can therefore glue the cancelled-out boundary components together in pairs to construct a compact
oriented genus surface S with one boundary component ∂ ∼= S1 and f : S → X such that f |∂ = γ.
Discarding all components of S that do not contain ∂, we can assume that S is connected.

Let g be its genus. As the following shows, we can view S as a 4g-gon with sides identified and
with an open disc removed from its center:

∂
a1

a2

a1a2

b1

b1

b2

b2

As this figure shows, we can write the loop in π1(S) around ∂ as a product of commutators
[a1, b1] · · · [ag, bg]. Mapping this over to π1(X, p0) shows that γ can be written as a product of
commutators, and thus vanishes in the abelianization of π1(X, p0). □

1.3. Relative homology

The abelian groups H0(X) and H1(X) are related via relative homology groups. Fix a subspace
Y of X.

1.3.1. Relative zeroth homology. We have H0(Y ) ⊂ H0(X), and we define H0(X,Y ) =
H0(X)/H0(Y ). Informally, elements of H0(X,Y ) are linear combinations of points on X that
disappear when they move into Y .

1.3.2. Relative first homology. The definition of H1(X,Y ) is a little more complicated.
We will give a proper definition later, so here we only give an intuitive idea of what it is. Recall
that elements of H1(X) are represented by formal Z-linear combinations of loops γ : S1 → X. For
H1(X,Y ), we need both loops γ : S1 → X and paths γ : [0, 1] → X whose endpoints lie in Y :

Y
Y Y

These can be homotoped through paths starting and ending in Y , and a loop or arc that moves
entirely inside Y disappears. We also allow moves that are similar to the ones we discussed in §1.2.
For instance:

Example 1.3.1. In the genus 2 surface Σ2
2 with two boundary components, the following represent

the same element of H1(Σ
2
2, ∂Σ

2
2):

In this figure, the coefficient of each loop and arc is +1. □
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1.3.3. Long exact sequence. There are evident maps

H1(Y ) → H1(X) → H1(X,Y ) and H0(Y ) → H0(X) → H0(X,Y ).

There is also a boundary map ∂ : H1(X,Y ) → H0(Y ) that deletes loops and take arcs γ : [0, 1] → X
connecting points of Y to γ(1)− γ(0) ∈ H0(Y ). All of this is set up so that the sequence

(1.3.1) H1(Y ) → H1(X) → H1(X,Y )
∂→ H0(Y ) → H0(X) → H0(X,Y ) → 0.

is exact. However, the map H1(Y ) → H1(X) need not be injective. For instance, there might be
a loop γ : S1 → Y and a compact oriented surface S with one boundary component ∂ ∼= S1 such
that there exists a map f : S → X with f |∂ = γ. Once we have defined higher homology groups,
f : S → X should represent an element of H2(X,Y ). Continuing this, we should be able to extend
(1.3.1) to a long exact sequence of the form

· · · → Hd(Y ) → Hd(X) → Hd(X,Y ) → Hd−1(Y ) → · · · .

In the next chapter we will make all of this precise.

1.4. Bordism

We close this chapter by describing a generalization of the definition we gave for H0(X) and
H1(X). Though it does not give the right answer for Hd(X) for all d, it provides a useful intuition.

1.4.1. Definition of bordism. Recall that the generators of H1(X) come from maps of closed
connected oriented 1-manifolds (i.e, circles) into X, and the relations come from maps of compact
oriented 2-manifolds with boundary. The following generalizes this:

Definition 1.4.1. Let X be a space and let d ≥ 0. Denote by Md(X) the set2 of continuous
maps g : Md → X from a closed connected oriented d-manifold Md to X. The dth bordism group
of X, denoted Bordd(X), is Z⟨Md(X)⟩/R where R is the subgroup of Z⟨Md(X)⟩ generated by the
following relations:

• for a compact oriented (d+1)-manifold Nd+1 with oriented boundary components ∂1, . . . , ∂r
and a continuous map f : Nd+1 → X, we have a relation

f |∂1 + · · ·+ f |∂r ∈ R. □

For g : Md → X, we will write [g] for the associated element of Bordd(X). Each Bordd is a
functor from the category of spaces to the category of abelian groups. In other words, given a map
of spaces ϕ : X → Y there is an induced map ϕ∗ : Bordd(X) → Bordd(Y ), namely

ϕ∗([g]) = [ϕ ◦ g] for g : Md → X.

These induced maps satisfy the usual properties of a functor:

(a) for the identity map 1 : X → X, we have 1∗ = id; and
(b) for maps of spaces ϕ : X → Y and ψ : Y → Z, we have (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

1.4.2. Trouble. Unfortunately, it is not true that Bordd(X) ∼= Hd(X). Indeed, for a one-point
space ∗, we have Hd(∗) = 0 for d ≥ 1, but Bordd(∗) is often nonzero. In other words, there exist
closed oriented d-manifolds Md such that the constant map g : Md → ∗ is not the trivial element
of Bordd(X). A bit of thought show that this means that Md is not the boundary of a compact
oriented (d+ 1)-manifold Nd+1. While we do not have the technology to prove this yet, one easy
example is the 4-manifold CP2.

Remark 1.4.2. It is actually the case that Bordd(X) ∼= Hn(X) for d ≤ 3. The first difference
happens for Bord4(X), where Bord4(X) ∼= H4(X)⊕ Z. □

2The pedantic reader will note that as stated this is not a set, but this is easily fixed by choosing the Md to lie in
a set containing a representative of each homeomorphism class of closed connected oriented d-manifolds. We will not

worry about this kind of issue in this book.
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1.4.3. Intuition for higher homology. Though it is technically difficult to define it this way,
one way of viewing Hd(X) is that it is a “bordism group” involving maps f : Md → X with Md

a certain kind of singular manifold. For instance, we would like the constant map g : CP2 → ∗ to
represent the trivial element of H4(∗) by viewing CP2 as the boundary of the space

Cone(CP2) = CP2 ×[0, 1]/ ∼ where ∼ collapses CP2 ×1 to a single point (the “cone point”).

This is not a manifold at the cone point. Instead of trying to make this precise, our actual definition
is in terms of simplices mapping to X and can be thought of as “simplicial bordism”.

1.4.4. From bordism to homology. Bordism also gives a good geometric way to think about
homology classes. Much later when we prove Poincaré Duality one thing we will show is that for a
compact oriented d-manifold Md, we have Hd(M

d) ∼= Z, generated by an element [Md] called the
fundamental class. We will prove many special cases of this along the way; for instance, one of our
earliest results will show this holds for Md = Sd.

Given a map f : Md → X, since homology is functorial we have an induced map f∗ : Hd(M
d) →

Hd(X). We therefore get an element f∗([M
d]) ∈ Hd(X). We will also prove that this respects the

bordism relation. In other words, using bordism we can often describe homology classes using maps
of manifolds into our spaces. Though this does not give a complete picture of homology, it is useful
way to identify, manipulate, and visualize homology classes.

1.5. Exercises



CHAPTER 2

Axioms of homology

Constructing the homology groups of a space is fairly technical, and it turns out that the details
of the construction are almost irrelevant to actually using homology to prove things. In this chaper,
we will describe a variant on the Eilenberg–Steenrod axioms for homology, which describe enough
basic properties that homology should have to calculate it for most reasonable spaces. We then give
some simple calculations and examples. The construction is postponed until later in the book.

Remark 2.0.1. We include some additional axioms beyond the usual Eilenberg–Steenrod axioms.
Our goal is to include enough axioms to make it easy to develop the basic theory without getting
bogged down in technicalities. □

2.1. Discussion of axioms

Fix an abelian group k. In this section, we discuss the axioms for a homology theory over k. In
the previous chapter we were taking k = Z, and the reader should reflect on why these axioms hold
for H0 and H1 as defined in the previous chapter.

Remark 2.1.1. A first-time reader is advised to just assume that k = Z. It is traditional in
textbooks to first develop homology over Z, and then assert that everything works without change if
you change Z to an arbitrary abelian group. We avoid doing this to reassure the reader that indeed
the basic theory works without change for arbitrary coefficients. □

2.1.1. Pairs. To talk about relative homology, we need a language to talk about spaces equipped
with a subspace.1 A pair of spaces is a tuple (X,Y ) with X a space and Y ⊂ X. A map of pairs
f : (X,Y ) → (Z,W ) is a continuous map f : X → Z such that f(Y ) ⊂ W . Two maps of pairs
f0 : (X,Y ) → (Z,W ) and f1 : (X,Y ) → (Z,W ) are said to be homotopic if there is a homotopy
ft : X → Z from f0 to f1 such that each ft is a map of pairs, i.e., ft(Y ) ⊂W for all 0 ≤ t ≤ 1.

A map of pairs f : (X,Y ) → (Z,W ) is a homotopy equivalence of pairs if there exist a map of
pairs g : (X,Y ) → (Z,W ) such that g ◦ f : (X,Y ) → (X,Y ) and f ◦ g : (Z,W ) → (Z,W ) are both
homotopic to the identity. We will call g a homotopy inverse to f and say that (X,Y ) is homotopy
equivalent to (Z,W ). We write this (X,Y ) ≃ (Z,W ). If Y = W = ∅, this reduces to the usual
definition of a homotopy equivalence X ≃ Z.

2.1.2. Basic setup. The theory of homology gives for each pair (X,Y ) of spaces a sequence
of abelian groups Hd(X,Y ;k), one for each d ≥ 0. These Hd(X,Y ;k) are functors from the
category of pairs of spaces to the category of abelian groups. In other words, for all maps of pairs
f : (X,Y ) → (Z,W ) we have induced maps

f∗ : Hd(X,Y ;k) → Hd(Z,W ;k),

and these induced maps satisfy the usual properties of a functor:

(a) for the identity map 1 : (X,Y ) → (X,Y ), we have 1∗ = id; and
(b) for maps of pairs f : (X,Y ) → (Z,W ) and g : (Z,W ) → (U, V ), we have (g ◦ f)∗ = g∗ ◦ f∗.

The homology groups are also functors of the coefficients k. In other words, for every map of abelian
group ϕ : k → k′ there exists maps ϕ∗ : Hd(X,Y ;k) → Hd(X,Y ;k′) satisfying the obvious analogues
of (a) and (b) above. These maps should be compatible with the ones induced by maps of pairs
f : (X,Y ) → (Z,W ) in the sense that the diagram

1This terminology generalizes our earlier terminology for maps f : (X, p) → (Y, q) between spaces equipped with

basepoints.

9
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Hd(X,Y ;k) Hd(Z,W ;k)

Hd(X,Y ;k′) Hd(Z,W ;k′)

f∗

ϕ∗ ϕ∗

f∗

should commute.

Notation 2.1.2. For a space X we let Hd(X;k) = Hd(X, ∅;k). We will omit the coefficients
k when they are Z, so Hd(X,Y ) and Hd(X) mean Hd(X,Y ;Z) and Hd(X;Z). Finally, for ease of
notation we will let Hd(X,Y ;k) = 0 for d < 0. □

2.1.3. Zeroth and first homology. The first basic property that we want from homology is
that it agrees with the definition we gave in the previous chapter for H0(X) and H1(X). Since the
definitions will not be literally the same, the right way to state this is to say that for d = 0 and d = 1
there is a natural isomorphism between Bordd and Hd. This means that for all spaces X there are
isomorphisms

Bord0(X) H0(X) and Bord1(X) H1(X)
∼= ∼=

that are natural in the sense that for all maps f : X → Y , the diagrams

Bord0(X) H0(X) and Bord1(X) H1(X)

Bord0(Y ) H0(Y ) and Bord1(Y ) H1(X)

∼=

f∗ f∗

∼=

f∗ f∗

∼= ∼=

commute. In categorical language, this means that there are natural transformations from Bord0 to H0

and Bord1 to H1 such that for all spaces X, the maps Bord0(X) → H0(X) and Bord1(X) → H1(X)
are isomorphisms.

2.1.4. Homotopy invariance. The second basic property that we want from homology is
that it is homotopy invariant. In other words, if f0 : (X,Y ) → (Z,W ) and f1 : (X,Y ) → (Z,W )
are homotopic maps of pairs, then (f0)∗ : Hd(X,Y ;k) → Hd(Z,W ;k) and (f1)∗ : Hd(X,Y ;k) →
Hd(Z,W ;k) are equal. See Exercise 2.6.1 for how to deduce this statement for pairs from the special
case of a single space.

If f : (X,Y ) → (Z,W ) is a homotopy equivalence with homotopy inverse g : (X,Y ) → (Z,W ),
then homotopy invariance implies that the maps

f∗ : Hd(X,Y ;k) → Hd(Z,W ;k) and g∗ : Hd(Z,W ;k) → Hd(X,Y ;k)

of abelian groups are inverses to each other, and in particular are isomorphisms. In other words,
homology cannot tell the difference between homotopy equivalent spaces and pairs.

2.1.5. Long exact sequences. The third basic property that we want from homology is the
long exact sequence of a pair, which was discussed at the end of the previous chapter. This says that
for all pairs (X,Y ), we have a long exact sequence

· · · Hd(Y ;k) Hd(X;k) Hd(X,Y ;k) Hd−1(Y ;k) · · · .

This long exact sequence should be natural: for a map of pairs f : (X,Y ) → (Z,W ), the diagram

· · · Hd(Y ;k) Hd(X;k) Hd(X,Y ;k) Hd−1(Y ;k) · · ·

· · · Hd(W ;k) Hd(Z;k) Hd(Z,W ;k) Hd−1(Y ;k) · · ·

f∗ f∗ f∗ f∗

should commute.

2.1.6. Dimension axiom. The fourth basic property that we want from homology is the
dimension axiom, which says that if ∗ is a one-point space then

Hd(∗;k) =

{
k if d = 0,

0 otherwise.
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Remark 2.1.3. Recall that in the previous chapter we defined bordism groups Bordd(X). Suitably
extended to bordism groups of pairs Bordd(X,Y ), these satisfy all the axioms of a homology theory
with coefficients in Z except for the dimension axiom. Theories of this kind are called extraordinary
homology theories. They are very important, but are beyond the scope of this book. □

2.1.7. Additivity axiom. The fifth basic property we want is the additivity axiom. This says
that if a space X can be written as the disjoint union of spaces

X =
⊔
i∈I

Xi,

then we have a natural isomorphism2

Hd(X;k) ∼=
⊕
i∈I

Hd(Xi;k) for all d.

See Exercise 2.6.2 for the extension of this to pairs (X,Y ).

2.1.8. Continuity axiom. The sixth basic property we want is the continuity axiom. Roughly
speaking, this says that homology only depends on compact subspaces of a space. To formulate it,
let X be a space. Write

X =

∞⋃
i=1

Xi with X1 ⊂ X2 ⊂ X3 ⊂ · · · .

Assume that for every compact subspace K of X, there exists some n ≥ 1 with K ⊂ Xn. For instance,
this holds if the Xi are all open. It also holds if X is a CW complex and each Xi is a subcomplex of
X (see Appendix 13). The continuity axiom says that the resulting maps

lim−→Hd(Xi;k) → Hd(X;k)

are isomorphisms. See Exercise 2.6.3 for the extension of this to pairs.

Remark 2.1.4. If X is a CW complex and the Xi are subcomplexes, then this can be deduced
from the other axioms (see Chapter 12). Most of our applications of this axiom will only use this
case, and it is usually not included as an axiom of homology. However, we will use it a few times in
Chapter 6 with the Xi open sets to study the topology of open subsets of Rn. □

2.1.9. Excision axiom. The final basic property we want is the excision axiom. Roughly
speaking, it formalizes the fact that in the relative homology groups Hd(X,Y ;k) we are “ignoring”
the points of Y , we should be able to remove portions of Y without changing Hd(X,Y ;k). For a
pair (X,Y ), the excision axiom say that if A ⊂ Y is such that A ⊂ Int(Y ), then3

Hd(X \A, Y \A;k) ∼= Hd(X,Y ;k) for all d.

In this case, we say that A is being excised from (X,Y ). We remark that this axiom is by far the
hardest one to verify.

2.2. Existence of homology theory

The following theorem says that homology theories exist. We will prove it in Chapter 12.

Theorem 2.2.1 (Existence of homology). For all abelian groups k, there exists a homology theory
over k that is naturally isomorphic to bordism in degrees 0 and 1, is homotopy invariant, has long
exact sequences of pairs, and satisfies the dimension, additivity, continuity, and excision axioms.

2Here natural means that if f : X → Y is a map and fi = f |Xi
for all i ∈ I, then f∗ : Hd(X;k) → Hd(Y ;k)

equals
∑

i∈I(fi)∗ :
⊕

i∈I Hd(Xi;k) → Hd(Y ;k).
3It is implicit here that the isomorphism is the map induced by the map of pairs (X \A, Y \A) → (X,Y ). Though

we will not always be explicit about it, whenever we assert that two things are isomorphic and there is an obvious map

between them, we mean that the obvious map induces the isomorphism.
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A reader who is uncomfortable using machines whose internal details they have not verified can
go and read Chapter 12 now. However, the details of the construction are not needed elsewhere, and
we suggest reading this book in its linear order. As we will see, though the axioms are a little abstract
they allow the calculation of the homology groups of most spaces (including all CW complexes), as
well as the many applications to classical questions in geometry. The “meaning” of homology is best
understood not from its definition, but from an accumulated store of examples and calculations.

Remark 2.2.2. The two difficult parts of the proof of Theorem 2.2.1 are the proofs of homotopy
invariance and excision. Those are the last two things proved in Chapter 12, and a reader who wants
a taste of the construction without the most technical parts of it should read that chapter up until
the start of those proofs. □

Remark 2.2.3. There are actually multiple constructions of homology theories, and they do not
give the same answer for all spaces. As we will prove, however, the axioms determine the homology
of spaces homotopy equivalent to CW complexes. Later we will introduce one final axiom (the weak
equivalence axiom) that pins down the answer on all spaces. We chose to postpone this final axiom
to avoid getting bogged down in technicalities at this early stage. □

Remark 2.2.4. As we said above, we will omit the coefficients from our notation when they
are Z, so Hd(X) means Hd(X;Z). At first our calculations will be independent of the coefficients,
so we will mostly do this when we are applying homology and there is no reason to use other
coefficients. Eventually, however, we will do calculations where the answer is very different depending
the coefficients. □

2.3. Some basic calculations: contractible spaces, reduced homology, and spheres

We now perform some basic calculations using the axioms for homology. In this section, we fix
an abelian group k.

2.3.1. Zeroth and first homology. By our work on bordism in the previous chapter, we have
the following:

• H0(X) is isomorphic to the free abelian group with basis the path-components of X; and
• if X is path-connected and p0 ∈ X, then H1(X) ∼= (π1(X, p0))

ab.

We remark that if we omitted the assumption that our homology theory is isomorphic to bordism in
degrees 0 and 1, then these would only hold for CW complexes (and proving them is not entirely
straightforward).

2.3.2. Contractible spaces. The easiest spaces to handle are the contractible ones:

Lemma 2.3.1. Let X be a contractible space. Then

Hd(X;k) =

{
k for d = 0,

0 otherwise.

Proof. Let ∗ be a one-point space. Since X is contractible, the constant map f : X → ∗ is a
homotopy equivalence. By homotopy invariance, f∗ : Hd(X;k) → Hd(∗;k) is an isomorphism for all
d. The dimension axiom then gives that Hd(X;k) ∼= Hd(∗;k) has the indicated values. □

2.3.3. Reduced homology. It is annoying that contractible spaces have non-trivial homology
groups in degree 0. To fix this, we make the following definition:

Definition 2.3.2. For a non-empty spaceX, the reduced homology groups ofX, denoted H̃d(X;k),
are the kernel of the map c∗ : Hd(X;k) → Hd(∗;k) induced by the constant map c : X → ∗. □

We thus have H̃d(X;k) → Hd(X;k) for d ≥ 1. As for d = 0, pick a point x0 ∈ X. Let ι : ∗ → X
take ∗ to x0 and let c : X → ∗ be the constant map. We thus have c ◦ ι = 1, so the composition

k = H0(∗;k) H0(X;k) H0(∗;k) = k
ι∗ c∗
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is the identity. In other words, c∗ is a split surjection with splitting ι∗, and thus

H0(X;k) = H̃0(X;k)⊕ k.

In particular:

Lemma 2.3.3. Let X be a contractible space. Then H̃d(X;k) = 0 for all d.

Also, since H0(X) is isomorphic to the free abelian group with basis the path-components of X,
we have:

Lemma 2.3.4. Let X be a space with n path components. Then H0(X) ∼= Zn and H̃0(X) ∼= Zn−1.

Reduced homology only makes sense for single spaces, and we do not define H̃d(X,Y ;k) for pairs
(X,Y ). However, we do have:

Lemma 2.3.5. Let X be a nonempty space and let x0 ∈ X. Then Hd(X,x0;k) ∼= H̃d(X;k) for
all d.

Proof. The long exact sequence of the pair (X,x0) contains segments of the form

Hd(x0;k) Hd(X;k) Hd(X,x0;k) Hd−1(x0;k).

For d ≥ 2, we have Hd(x0;k) = Hd−1(x0;k) = 0, so this implies that Hd(X,x0;k) ∼= Hd(X;k) =

H̃d(X;k). For d = 1, we only have Hd(x0;k) = 0 and we continue our long exact sequence further to
the right:

0 H1(X;k) H1(X,x0;k) H0(x0;k) H0(X;k) H0(X,x0;k) 0.

By what we said above, the map H0(x0;k) → H0(X;k) is an injection whose cokernel is H̃0(X;k).
The lemma follows. □

Remark 2.3.6. For a pair (X,Y ) with Y ̸= ∅, there is also a long exact sequence in reduced
homology of the form

· · · H̃d(Y ;k) H̃d(X;k) Hd(X,Y ;k) H̃d−1(Y ;k) · · · .
See Exercise 2.6.4. □

2.3.4. Spheres. Our next calculation is as follows. It gives a good indication of the power of
the excision axiom.

Lemma 2.3.7. For n ≥ 0, we have

H̃d(Sn;k) =

{
k for d = n,

0 otherwise.

Proof. The proof is by induction on n. For the base case n = 0, the 0-sphere S0 is a discrete

space consisting of two points, so H̃d(S0;k) is k for d = 0 and 0 otherwise. Now assume that n ≥ 1 and

that the lemma is true for Sn−1. It is enough to construct an isomorphism H̃d(Sn;k) ∼= H̃d−1(Sn−1;k).
For this, let p1 and p2 be the north and south poles on Sn. Let

U1 = Sn \ p1 ∼= Rn and U12 = Sn \ {p1, p2} ∼= Rn \ 0 ≃ Sn−1.

The long exact sequences in reduced homology of the pairs (Sn, U1) and (U1, U12) contain the segments

H̃d(U1;k) H̃d(Sn;k) H̃d(Sn, U1;k) H̃d−1(U1;k)

and

H̃d(U1;k) H̃d(U1, U12;k) H̃d−1(U12;k) H̃d−1(U1;k).
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Since U1 is contractible, we have H̃d(U1;k) = H̃d−1(U1;k) = 0. We therefore have isomorphisms

H̃d(Sn;k) ∼= H̃d(Sn, U1;k) and H̃d(U1, U12;k) ∼= H̃d−1(U12;k).

Using excision, we can excise the point p2 from (Sn, U1) and deduce that

H̃d(Sn, U1;k) ∼= H̃d(U1, U12;k).

Combining all of our isomorphisms with the fact that U12 ≃ Sn−1, we conclude that

H̃d(Sn;k) ∼= H̃d(Sn, U1;k) ∼= H̃d(U1, U12;k) ∼= H̃d−1(U12;k) ∼= H̃d−1(Sn−1;k). □

2.3.5. Infinite-dimensional spheres. Regarding Sn as the equator in Sn+1, we have an
increasing sequence

S0 ⊂ S1 ⊂ S2 ⊂ · · · .
Define

S∞ =

∞⋃
n=0

Sn.

Endow S∞ with the weak topology, so U ⊂ S∞ is open if and only if U ∩ Sn is open for all n. We
then have:

Lemma 2.3.8. H̃d(S∞;k) = 0 for all d.

Proof. It is easy to see that if K ⊂ S∞ is compact, then there exists some n ≥ 0 such that
K ⊂ Sn (see Exercise 2.6.5). We can thus apply the continuity axiom and see that

H̃d(S∞;k) = lim−→
n

H̃d(Sn;k).

Since H̃d(Sn;k) = 0 for d ≥ n− 2, this direct limit vanishes. □

Remark 2.3.9. In fact, S∞ is contractible. See Exercise 2.6.5. □

2.4. The Brouwer fixed point theorem

Our simple calculations already have the following nontrivial consequence, whose statement does
not involve homology.

Theorem 2.4.1 (Brouwer fixed point theorem). For some n ≥ 1, let f : Dn → Dn be a continuous
map. Then f has a fixed point, i.e., there exists some x ∈ Dn with f(x) = x.

Proof. Assume that f has no fixed points. Define a function r : Dn → Sn−1 as follows. For
x ∈ Dn, consider the ray starting at f(x) and passing through x. This is well-defined since f(x) ̸= x,
and it intersects the boundary Sn−1 in a single point. We define r(x) to be that intersection point:

f(x)
x
r(x)

For x ∈ Sn, we have r(x) = x. In other words, r is a retraction from Dn to its boundary Sn−1.
Letting ι : Sn−1 ↪→ Dn be the inclusion, the composition4

Z = H̃n−1(Sn−1) H̃n−1(Dn) H̃n−1(Sn−1) = Zι∗ r∗

is the identity. Since H̃n−1(Dn) = 0, this is a contradiction. □

4Here we are using our convention that we omit the coefficients from homology when they are Z.
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2.5. Local homology and the invariance of dimension

We close this chapter with:

Definition 2.5.1. Let X be a space. For p ∈ X, the local homology groups of X at p, denoted
Hd(X|p;k), are Hd(X,X \ p;k). □

The reason for calling these local homology groups is:

Lemma 2.5.2. Let X be a space, let p ∈ X, and let U be a neighborhood of p. Then Hd(X|p;k) ∼=
Hd(U |p;k).

Proof. The is immediate from excision:

Hd(X|p;k) = Hd(X,X \ p;k) ∼= Hd(U,U \ p) = Hd(U |p;k). □

As an example of the kind of information contained in local homology groups, we have:

Lemma 2.5.3. Let M be an n-manifold and let p ∈M . Then Hd(M |p;k) is k for d = n and is 0
for d ̸= 0.

Proof. Let U be a chart around p equipped with a homeomorphism U ∼= Rn taking p to 0 ∈ Rn.
Using Lemma 2.5.2, we have

Hd(M |p;k) ∼= Hd(U |p;k) ∼= Hd(Rn|0;k).

The long exact sequence of the pair (Rn,Rn \ 0) contains the segment

H̃d(Rn;k) Hd(Rn,Rn \ 0;k) H̃d−1(Rn \ 0;k) H̃d−1(Rn;k)

Since Rn is contractible and Rn \ 0 ≃ Sn−1, we deduce that

Hd(Rn|0;k) = Hd(Rn,Rn \ 0;k) ∼= H̃d−1(Rn \ 0;k) ∼= H̃d−1(Sn−1;k).

This is indeed k for d = n and 0 otherwise. □

This has the following corollary:

Corollary 2.5.4 (Invariance of dimension). Let N be an n-manifold and M be an m-manifold
such that N ∼=M . Then n = m.

Proof. Pick p ∈ N . A homeomorphism f : N →M induces an isomorphism f∗ : Hn(N |p)
∼=−→

Hn(M |f(p)). Since Hn(N |p) ∼= Z, we deduce that Hn(M |f(p)|) ∼= Z and thus that n = m. □

Remark 2.5.5. If N andM were smooth manifolds and p ∈ N , the derivative of a diffeomorphism
f : N →M would be an isomorphism on tangent spaces

Dfp : TpN
∼=−→ Tf(p)M.

It follows that these tangent spaces have the same dimension, so N and M have the same dimension.
Without smoothness, however, something like homology is needed to rule even the existence of
homeomorphisms Rn ∼= Rm with n ̸= m. □

Remark 2.5.6. Another classic application of local homology is distinguishing the boundary of
a manifold from its interior. See Exercise 2.6.6. □

2.6. Exercises

Exercise 2.6.1. Let f0 : (X,Y ) → (Z,W ) and f1 : (X,Y ) → (Z,W ) be homotopic maps of
pairs. Prove that f0 and f1 induce the same map on homology. Hint: use the naturality of the long
exact sequence of the pair and the homotopy invariance of the homology of spaces, along with the
five-lemma. □
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Exercise 2.6.2. Let (X,Y ) be a pair and let

X =
⊔
i∈I

Xi

be a decomposition of X. For each i, let Yi = Y ∩Xi. Prove that

Hd(X,Y ;k) =
⊕
i∈I

Hd(Xi, Yi;k) for all d. □

Exercise 2.6.3. Let (X,Y ) be a pair. Write

X =

∞⋃
i=1

Xi with X1 ⊂ X2 ⊂ X3 ⊂ · · · ,

and set Yi = Y ∩Xi for all i. Assume that for every compact subspace K of X, there exists some
n ≥ 1 with K ⊂ Xn. Prove that the resulting maps

lim−→Hd(Xi, Yi;k) → Hd(X,Y ;k) for all d

are isomorphisms. Hint: you will need to prove that you can apply the continuity axiom to Y as well
as X. You will also need to either know or prove that direct limits are an exact functor on abelian
groups, i.e., they take exact sequences to exact sequences. □

Exercise 2.6.4. Let (X,Y ) be a pair. Prove that there is a long exact sequence

· · · H̃d(Y ;k) H̃d(X;k) Hd(X,Y ;k) H̃d−1(Y ;k) · · ·
in reduced homology. □

Exercise 2.6.5. Prove the following two facts about S∞:

(a) For all compact K ⊂ S∞, there exists some n ≥ 0 with K ⊂ Sn.
(b) The space S∞ is contractible (construct an explicit deformation retraction to a point, making

sure to verify that it is continuous!). □

Exercise 2.6.6. Let Xn and Y n be manifolds with boundary and let f : Xn → Y n be a
homeomorphism. Prove that f takes ∂Xn to ∂Y n. Hint: use local homology. □

Exercise 2.6.7. Let G1 and G2 be graphs with no valence 2 vertices and let f : G1 → G2 be
a homeomorphism. Prove that f takes vertices to vertices and edges to edges. Hint: use local
homology. □

Exercise 2.6.8. In this exercise, you will prove the long exact sequence for a triple, which says
the following. Let Z ⊂ Y ⊂ X be three spaces. We then have a long exact sequence of the form

· · · Hd(Y,Z;k) Hd(X,Z;k) Hd(X,Y ;k) Hd−1(Y, Z;k) · · ·
We remark that we will give a simple direct proof of this for the homology theory we will construct
in Chapter 12. The point of this exercise is to practice diagram chasing and show that this can be
derived from the long exact sequence of the pair, and thus the axioms.

(a) Prove that the purported long exact sequence of a triple is a chain complex, i.e., that
composing any two adjacent maps in it gives 0.

(b) Prove the braid lemma, which says the following. Consider a “braided” commutative
diagram

• • • •

• • • • •

• • • •
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where each • is an abelian group. The pattern continues to the left and to the right. Assume
that the red, blue, orange, and green sequences are chain complexes, and that all but
possibly the orange one are exact. Prove that the orange one is exact. Hint: this is a
diagram chase, and the hardest part is finding good notation to express everything.

(c) Prove the long exact sequence of a triple by filling in the red, blue, and green sequences
with the long exact sequence for the pairs (X,Z), (X,Y ), and (Y, Z), respectively and
identifying the orange sequence with the long exact sequence of the triple. □





CHAPTER 3

Degree theory and its applications

Homology greatly clarifies the classical notion of the degree of a map between two closed oriented
manifolds of the same dimension.

3.1. Classical story

We start by discussing the classical story. Since we will soon generalize this, we omit most proofs.
Let Mn and Nn be closed connected oriented smooth n-manifolds and let f : Mn → Nn be a smooth
map.

3.1.1. Regular points and local degrees. A regular point of f is a p ∈ Mn such that the
derivative map

Dpf : TpM
n → Tf(p)N

n

is surjective. Since the tangent spaces TpM
n and Tf(p)N

n are both n-dimensional, this is equivalent
to requiring Dpf to be an isomorphism. These tangent spaces are oriented vector spaces. The
local degree of f at p, denoted degp(f), is +1 if Dpf is orientation-preserving and is −1 if Dpf is
orientation-reversing.

3.1.2. Regular values and degrees. A regular value of f is a point q ∈ Nn such that each
p ∈ f−1(q) is a regular point of f . Sard’s theorem implies that regular values exist, and in fact are
dense in Nn. Letting q ∈ Nn be a regular value of f , the degree of f is

deg(f) =
∑

p∈f−1(q)

degp(f).

The fundamental theorem of degree theory says that this does not depend on the choice of regular
value q. Moreover, if f, g : Mn → Nn are homotopic smooth maps, then deg(f) = deg(g).

3.1.3. Surjective maps. Having nonzero degree forces a map to be surjective:

Lemma 3.1.1. Let Mn and Nn be closed connected oriented smooth n-manifolds and let f : Mn →
Nn be a smooth map with deg(f) ̸= 0. Then f is surjective.

Proof. Assume that f is not surjective, and let q ∈ Nn be a point not in its image. Trivially q
is a regular value, so since f−1(q) = ∅ we deduce that

deg(f) =
∑

p∈f−1(q)

degp(f) = 0,

a contradiction. □

3.1.4. Homotoping the identity map. Another application of degree is:

Lemma 3.1.2. Let Mn be a closed connected smooth n-manifold. Then the identity map 1 : Mn →
Mn is not homotopic to a constant map.

Proof. If Mn is orientable, then we can talk about deg(1) and trivially deg(1) = 1. Since
constant maps have degree 0, this implies that 1 is not homotopic to a constant map. If Mn is

not orientable, then let π : M̃n → Mn be its orientable double cover and let 1̃ : M̃n → M̃n be the
identity map. If 1 : Mn →Mn is homotopic to a constant map, then we can lift this homotopy to

M̃n and see that 1̃ is homotopic to a constant map, which we just proved is impossible. □

19
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3.1.5. Fundamental theorem of algebra. A final classic application of degree theory is:

Theorem 3.1.3 (Fundamental theorem of algebra). Let f ∈ C[z] be a nonconstant polynomial.
Then there exists some z0 ∈ C such that f(z0) = 0.

Proof. Regard f as a smooth map f : C → C. Since C is not compact, the theory of degree
does not apply directly to f . However, we can compactify C to S2 = C ∪ {∞} and extend f to S2

by letting f(∞) = ∞. This is a smooth map,1 so we can talk about deg(f).
A point p ∈ C is a regular point of f precisely when f ′(p) ̸= 0. In this case, identifying TpC and

Tf(p)C with C, the derivative map

Dpf : TpC → Tf(p)C
is multiplication by f ′(p) ∈ C. In particular, it is orientation-preserving, so degp(f) = 1.

Since f ′(z) has at most (d− 1) zeros, we see that all but finitely many points of C are regular
values of f . Since d ≥ 1, the polynomial f(z) takes on infinitely many values, so we can choose some
regular value q ∈ C such that f−1(q) ̸= ∅. We deduce that

deg(f) =
∑

p∈f−1(q)

degp(f) =
∑

p∈f−1(q)

1 = |f−1(q)| ≠ 0.

By Lemma 3.1.1, this shows that f must be surjective, so in particular there must be some z0 ∈ C
with f(z0) = 0. □

3.2. Topological degree for spheres

The theory outlined in the previous section has the flaw of only applying to smooth maps.2

Homology provides an elegant intrinsic notion of degree for continuous maps. Moreover, as we will
see later in this book it provides a basic tool for making computations in homology. At this point in
our development, we only have the technology to study the degree of maps between spheres. Later in
this chapter we will explain what has to be done to study it in general.

Remark 3.2.1. We will not use the definitions or results from the previous section to set up the
homological notion of degree, and we will not distinguish them in our notation. Later we will prove
that they are equal. □

3.2.1. Definition of degree. Consider a map f : Sn → Sn. The induced map f∗ : H̃n(Sn) →
H̃n(Sn) is a group homomorphism from Z to Z, and thus is multiplication by some d ∈ Z. This
integer d is the degree of f , and is denoted deg(f). Since homology is homotopy invariant, the degree
of f is also unchanged under homotopies.

3.2.2. Reflections. Here is an important example of this. Recall that if H is a hyperplane in
Rn, then the reflection in H is the map r : Rn → Rn defined as follows. Let v⃗ ∈ Rn be a unit vector
orthogonal to H. Every x ∈ Rn can be written uniquely as x = h+ cv⃗ for some h ∈ H and c ∈ R,
and r(x) = h− cv⃗. We then have:

Lemma 3.2.2. Let r : Sn → Sn be the restriction to Sn of the reflection in a hyperplane H in
Rn+1. Then deg(r) = −1.

1To see that this is smooth at ∞, note that making the change of coordinates z 7→ 1/z to the domain and

codomain of f turns it into 1/f(1/z). We must check that this extends to a smooth function that vanishes at z = 0.
Writing

f(z) = anz
n + · · ·+ a1z + a0 with an ̸= 0,

this follows from the fact that

1/f(1/z) =
1

an(1/z)n + · · ·+ a1(1/z) + a0
=

zn

an + an−1z + · · ·+ a1zn−1 + a0zn
.

2This can be circumvented using the fact that every continuous map between smooth manifolds can be homotoped

to a smooth map, but this is an awkward kludge. Note that a version of this even shows up in the foundations of
the theory: to use smooth techniques to prove that the degree is invariant under homotopy, one must prove that two

homotopic smooth maps are smoothly homotopic.
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Proof. Varying H homotopes r, which does not change deg(r). This can change H to any
hyperplane, so we deduce that it is enough to prove the lemma for any single reflection. We will
handle the reflection

r(x1, . . . , xn+1) = (−x1, x2, . . . , xn+1) for (x1, . . . , xn+1) ∈ Sn.

The proof will be by induction on n. For the base case n = 0, note that S0 ⊂ R1 consists of two
points 1 and −1. To keep our notation straight, let p = 1 and p′ = −1. We thus have

r(p) = p′ and r(p′) = p.

Recall that H0(S0) is the free abelian group on the path components of S0. We can thus identify
H0(S0) with the group Z⟨p, p′⟩ of formal Z-linear combinations of p and p′. Using this identification,

the group H̃0(S0) ∼= Z is generated by p− p′. We have

r∗(p− p′) = p′ − p = −(p− p′).

In other words, r∗ as as multiplication by −1 on H̃0(S0), as desired.
Now assume that n ≥ 1 and that the lemma is true for Sn−1. Let

q = (0, . . . , 1) ∈ Sn and q′ = (0, . . . ,−1) ∈ Sn,

and identify Sn−1 with the subspace of Sn whose last coordinate is 0. We thus have r(q) = q and

r(q′) = q′, and r restricts to a reflection on Sn−1. Going back to our calculation of H̃n(Sn) from
Lemma 2.3.7, we have isomorphisms

H̃n(Sn) Hn(Sn,Sn \ q) Hn(Sn \ q′,Sn \ {q, q′}) H̃n−1(Sn \ {q, q′}) H̃n−1(Sn−1).
∼= ∼= ∼= ∼=

Here the first isomorphism comes from the long exact sequence of the pair (Sn,Sn \ q), the second
from excision, the third from the long exact sequence of the pair (Sn \ q′,Sn \ {q, q′}), and the fourth
from the fact that Sn \ {q, q′} deformation retracts to Sn−1. The reflection r acts on each of these
homology groups, and these isomorphisms commute with the action of r. We know by induction that

r acts as multiplication by −1 on H̃n−1(Sn−1), so the same is true for H̃n(Sn), as desired. □

3.2.3. Composition. The notion of degree behaves well under composition:

Lemma 3.2.3. Let f : Sn → Sn and g : Sn → Sn be maps. Then

deg(f ◦ g) = deg(f) · deg(g).

Proof. The map (f ◦ g)∗ : H̃n(Sn) → H̃n(Sn) equals the composition

H̃n(Sn) H̃n(Sn) H̃n(Sn).
g∗ f∗

Since f∗ is multiplication by deg(f) and g∗ is multiplication by deg(g), we conclude that (f ◦ g)∗ is
multiplication by deg(f) · deg(g), as desired. □

3.2.4. Antipodal map. Recall that the antipodal map of Sn is the map a : Sn → Sn defined by
a(p) = −p.

Lemma 3.2.4. The degree of the antipodal map a : Sn → Sn is (−1)n+1.

Proof. The map a is the composition of the (n+ 1) reflections that multiply the coordinates of
Sn ⊂ Rn+1 by −1. Lemma 3.2.2 says that each of these reflections has degree −1, so Lemma 3.2.3
implies that a has degree (−1)n+1. □
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3.2.5. Hairy ball theorem. As an application of these results, we prove the following. Recall
that for p ∈ Sn, we can identify the tangent space TpSn with the subspace of Rn+1 consisting of
vectors orthogonal to p:

p

Tp𝕊
n

A vector field on Sn is thus the same as continuous function σ : Sn → Rn+1 such that σ(p)·p = 0,
where · is the usual dot product.

Theorem 3.2.5 (Hairy ball theorem). The sphere Sn has a nowhere vanishing vector field if and
only if n is odd.

Proof. Assume first that n is odd. Write n = 2m−1. We can then define our nowhere vanishing
vector field via the map σ : Sn → R2m given by the formula

σ(x1, . . . , x2m) = (x2,−x1, x4,−x3, . . . , x2m,−x2m−1) for (x1, . . . , x2m) ∈ Sn.
This is a vector field on Sn since

σ(x1, . . . , x2m)·(x1, . . . , x2m) = (x1x2 − x2x1) + · · ·+ (x2m−1x2m − x2mx2m−1) = 0,

and it is nowhere vanishing since the point (0, . . . , 0) ∈ R2m does not lie on Sn.
Assume now that Sn has a nowhere vanishing vector field σ : Sn → R2m. Define a family of maps

ft : Sn → Sn as follows. Consider p ∈ Sn. Then ft(p) is the point at distance πt along the great circle
on Sn starting at p in the direction σ(p):

p
σ(p)

ft(p)

Since this great circle has total length 2π, the point at distance π along it is −p. We therefore have
f0(p) = p and f1(p) = −p. In other words, f is a homotopy from the identity map to the antipodal
map. We conclude that the antipodal map must have degree 1. Since the antipodal map has degree
(−1)n+1, we conclude that n must be odd. □

3.3. Exercises



CHAPTER 4

Collapsing relative homology

Fix an abelian group k. This chapter is devoted to a basic property of relative homology: for a
pair (X,Y ) satisfying suitable hypotheses, we have

Hd(X,Y ;k) ∼= H̃d(X/Y ;k) for all d.

Combined with the long exact sequence of the pair (X,Y ), this gives a powerful tool for inductively
understanding spaces. As an example of this, we calculate the homology groups of real and complex
projective spaces.

4.1. Collapsing theorem

We start by stating and proving the result alluded to above.

4.1.1. Good pairs. The hypothesis needed is:

Definition 4.1.1. A pair (X,Y ) is a good pair if Y is a nonempty closed subset of X and there
exists an open set U containing Y such that U deformation retracts to Y . □

Example 4.1.2. Letting Y be as follows, the pair (R2, Y ) is a good pair:

UY

The set U is as indicated. In this case, it is easy to see that R2/Y ∼= R2. □

Example 4.1.3. If X is a smooth manifold and Y is a smoothly embedded submanifold of X,
then (X,Y ) is a good pair. For U , one can take a tubular neighborhood of Y in X. □

Example 4.1.4. If X is a CW complex and Y is a subcomplex of X, then (X,Y ) is a good pair.
See Appendix 13. □

4.1.2. Collapsing theorem. We have:

Theorem 4.1.5. Let (X,Y ) be a good pair. Then Hd(X,Y ;k) ∼= H̃d(X/Y ;k) for all d.

Remark 4.1.6. The isomorphism Hd(X,Y ;k) ∼= H̃d(X/Y ;k) is induced by the map of pairs
(X,Y ) → (X/Y, Y/Y ). Here we are using the fact that for any nonempty space Z and any z0 ∈ Z

we have Hd(Z, z0;k) ∼= H̃d(Z;k) for all d; see Lemma 2.3.5. □

Remark 4.1.7. Instead of requiring (X,Y ) to be a good pair, we could instead have required
the inclusion Y ↪→ X to be a cofibration. See Appendix 16. □

Before we prove Theorem 4.1.5, we point out a consequence of it:

Corollary 4.1.8. Let X be a space and let Y ⊂ X be a contractible subspace such that (X,Y )

is a good pair. Then H̃d(X;k) ∼= H̃d(X/Y ;k) for all d.

Proof. The long exact sequence for the pair (X,Y ) contains the segment

H̃d(Y ;k) H̃d(X;k) Hd(X,Y ;k) Hd−1(Y ;k).

23
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Since Y is contractible its reduced homology groups all vanish, so using Theorem 4.1.5 we have

H̃d(X;k) ∼= Hd(X,Y ;k) ∼= H̃d(X/Y ;k). □

For the proof of Theorem 4.1.5, we need:

Lemma 4.1.9. Let (X,Y ) be a pair and let Y ′ be a subset of X with Y ⊂ Y ′ such that the induced
map Hd(Y ;k) → Hd(Y

′;k) is an isomorphism for all d. Then Hd(X,Y ;k) ∼= Hd(X,Y
′;k) for all d.

Proof. Consider the map between the long exact sequences of the pairs (X,Y ) and (X,Y ′):

· · · Hd(Y ;k) Hd(X;k) Hd(X,Y ;k) Hd−1(Y ;k) Hd−1(X;k) · · ·

· · · Hd(Y
′;k) Hd(X;k) Hd(X,Y

′;k) Hd−1(Y
′;k) Hd−1(X;k) · · ·

∼= = ∼= =

The indicated isomorphisms come from the hypotheses. The five lemma now implies that the maps
Hd(X,Y ;k) → Hd(X,Y

′;k) are isomorphisms for all d. □

Proof of Theorem 4.1.5. Let y0 be the point Y/Y of X/Y . Lemma 2.3.5 implies that

Hd(X/Y, y0;k) ∼= H̃d(X/Y ;k). Letting f : (X,Y ) → (X/Y, y0) be the map of pairs, it is therefore
enough to prove that the induced map

f∗ : Hd(X,Y ;k) → Hd(X/Y, y0;k)

is an isomorphism.
Let U be an open neighborhood of Y in X that deformation retracts to Y . It follows that U/Y

is an open neighborhood of y0 in X/Y that deformation retracts to y0. Let g : (X,U) → (X/Y,U/Y )
be the map of pairs. We then have a commutative diagram

Hd(X,Y ;k) Hd(X/Y, y0;k)

Hd(X,U ;k) Hd(X/Y,U/Y ;k).

f∗

g∗

Lemma 4.1.9 implies that the vertical maps are both isomorphisms, so to prove that f∗ is an
isomorphism it is enough to prove that g∗ is an isomorphism.

Next, let h : (X \ Y, U \ Y ) → (X/Y \ {y0}, U/Y \ {y0}) be the map of pairs. We then have a
commutative diagram

Hd(X \ Y,U \ Y ;k) Hd(X/Y \ {y0}, U/Y \ {y0};k)

Hd(X,U ;k) Hd(X/Y,U/Y ;k).

h∗

g∗

Excision implies that the vertical maps are both isomorphisms, so to prove that g∗ is an isomorphism
it is enough to prove that h∗ is an isomorphism. But this is easy; indeed, the map h : (X \Y, U \Y ) →
(X/Y \ {y0}, U/Y \ {y0}) is actually an isomorphism of pairs. □

4.2. Wedges product of spaces

Let {(Xi, pi)}i∈I be a collection of based spaces. Recall that their wedge product is the space
obtained by gluing together the basepoints of the Xi:∨

i∈I

Xi =
⊔
i∈I

XI/ ∼ where pi ∼ pj for all i, j ∈ I.

The basepoints in the Xi map to a distinguished basepoint ∗ of
∨

i∈I Xi. For each i0 ∈ I, there are
inclusion and collapse maps

ιi0 : (Xi0 , pi0) ↪→

(∨
i∈I

Xi, ∗

)
and ci0 :

(∨
i∈I

Xi, ∗

)
→ (Xi0 , pi0).



4.3. COMPLEX PROJECTIVE SPACE 25

Here ci0 collapses every term but Xi0 to the basepoint. These satisfy ci0 ◦ ιi0 = 1Xi0
, so on reduced

homology the composition

H̃d(Xi0 ;k) H̃d(
∨

i∈I Xi;k) H̃d(Xi0 ;k)
(ιi0 )∗ (ci0 )∗

is the identity. In other words, (ιi0)∗ is a split injection. Assembling all the (ιi0)∗ together, we get
an injective map ∑

i∈I

(ιi)∗ :
⊕
i∈I

H̃d(Xi;k) → H̃d(
∨
i∈I

Xi;k).

As a first application of Theorem 4.1.5, we prove this is an isomorphism if each pi is a good basepoint
for Xi, i.e., the pairs (Xi, pi) are good pairs.

Lemma 4.2.1. Let {(Xi, pi)}i∈I be a collection of based spaces such that each pi is a good basepoint
for Xi. Then the map ⊕

i∈I

H̃d(Xi;k) → H̃d(
∨
i∈I

Xi;k)

discussed above is an isomorphism for all d.

Proof. Using the relative version of the additivity axiom along with Theorem 4.1.5, we have:⊕
i∈I

H̃d(Xi;k) ∼=
⊕
i∈I

Hd(Xi, pi;k) ∼= Hd(
⊔
i∈I

Xi,
⊔
i∈I

pi;k) ∼= Hd(
∨
i∈I

Xi, ∗;k) ∼= H̃d(
∨
i∈I

Xi;k).

Here ∗ is the distinguished basepoint of the wedge product. It is immediate that this composition of
isomorphisms is given by the indicated map. □

4.3. Complex projective space

As another application of Theorem 4.1.5, we calculate the homology of complex projective space.
Recall that this is the space CPn of lines through the origin in Cn+1. Points in CPn can be expressed
via homogeneous coordinates: for z0, . . . , zn ∈ C not all 0, the point [z0, . . . , zn] ∈ CPn is the line
through (z0, . . . , zn) ∈ Cn+1. For λ ∈ C×, we have

[λz0, . . . , λzn] = [z0, . . . , zn] for [z0, . . . , zn] ∈ CPn.

We have:

Theorem 4.3.1. For n ≥ 1, we have

Hd(CPn;k) =

{
k if 0 ≤ d ≤ n even,

0 otherwise.

Proof. The proof is by induction on n. The base case n = 1 holds since CP1 ∼= S2 = C∪{∞} via
the homeomorphism taking [z, 1] ∈ CP1 to z ∈ C and [0, 1] ∈ CP1 to ∞. Now assume that n ≥ 2 and
that the theorem is true for CPn−1. Embed CPn−1 into CPn via the map taking [z0, . . . , zn−1] ∈ CPn−1

to [z0, . . . , zn−1, 0] ∈ CPn. The complement CPn \CPn−1 is all [z0, . . . , zn] ∈ CPn with zn ̸= 0. This is
homeomorphic to Cn via the map taking [z0, . . . , zn] ∈ CPn with zn ̸= 0 to (z0/zn, . . . , zn−1/zn) ∈ Cn.
This implies that CPn /CPn−1 is the 1-point compactification of Cn, i.e., that

CPn /CPn−1 ∼= S2n.
The pair (CPn,CPn−1) is a good pair,1 so we can apply Theorem 4.1.5 and see that

Hd(CPn,CPn−1;k) ∼= H̃d(CPn /CPn−1;k) ∼= H̃d(S2n;k) =

{
k if d = 2n,

0 otherwise.

1This follows from the fact that CPn is a smooth manifold and CPn−1 is a smoothly embedded submanifold.

More directly, the set U = CPn \[0, . . . , 0, 1] is an open neighborhood of CPn−1 that deformation retracts to CPn−1

via the deformation retraction rt : U → U given by the formula

rt([z0, . . . , zn]) =

{
[z0/zn, . . . , zn−1/zn, 1− t] if zn ̸= 0,

[z0, . . . , zn−1, 0] if zn = 0
for 0 ≤ t ≤ 1.
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Now consider the long exact sequence of the pair (CPn,CPn−1). It contains the segment

Hd+1(CPn,CPn−1;k) Hd(CPn−1;k) Hd(CPn;k) Hd(CPn,CPn−1;k)

For d odd, by our inductive hypothesis we have Hd(CPn−1;k) = 0 and Hd(CPn,CPn−1;k) = 0, so
Hd(CPn;k) = 0. For d even but not 2n, we have Hd+1(CPn,CPn−1;k) = 0 and Hd(CPn,CPn−1;k) =
0, so Hd(CPn;k) ∼= Hd(CPn−1;k), which is as indicated in the theorem by induction. The only
remaining case is d = 2n. This uses the following segment of the long exact sequence of the pair
(CPn,CPn−1):

H2n(CPn−1;k) H2n(CPn;k) H2n(CPn,CPn−1;k) H2n−1(CPn−1;k)

By induction we have H2n(CPn−1;k) = 0 and H2n−1(CPn−1;k) = 0, so

H2n(CPn;k) ∼= H2n(CPn,CPn−1;k) ∼= H̃2n(S2n;k) = k. □

4.4. Real projective space

4.5. Exercises



CHAPTER 5

The Mayer–Vietoris theorem and its applications

Fix an abelian group k. The Mayer–Vietoris theorem can be viewed as an analogue for homology of
the Seifert–van Kampen theorem for the fundamental group. Roughly speaking, given a decomposition
of a space X into two subspaces A and B it explains how Hd(X;k) is built from Hd(A;k) and Hd(B;k)
and Hd(A ∩B;k).

5.1. Mayer–Vietoris

Here is a precise statement:

Theorem 5.1.1 (Mayer–Vietoris). Let X be a topological space and let A,B ⊂ X be subspaces
such that X = Int(A) ∪ Int(B). Then we have a long exact sequence

· · · Hd(A ∩B;k) Hd(A;k)⊕Hd(B;k) Hd(X;k) Hd−1(A ∩B;k) · · · .

Remark 5.1.2. There is also a version where the homology groups are replaced by reduced
homology groups (see Exercise 5.6.2), as well as various relative versions (see Exercise 5.6.3). □

Remark 5.1.3. The Mayer–Vietoris exact sequence does not generalize in a straightforward
way to a cover of a space by more than two sets. Instead, what such a cover leads to is a spectral
sequence called the Mayer–Vietoris Spectral Sequence. □

Proof of Theorem 5.1.1. The pair (B,A ∩ B) can be obtained from (X,A) by removing
X \B:

A A∩B B

Since X = Int(A) ∪ Int(B), the closure of X \B lies in Int(A). We can therefore apply excision to
see that the map (B,A ∩B) → (X,A) induces isomorphisms

hd : Hd(B,A ∩B;k)
∼=−→ Hd(X,A) for all d.

These isomorphisms appear in the map between the long exact sequences for the pairs (B,A ∩B)
and (X,A):

· · · Hd+1(B,A ∩B;k) Hd(A ∩B;k) Hd(B;k) Hd(B,A ∩B;k) Hd−1(A ∩B;k) · · ·

· · · Hd+1(X,A;k) Hd(A;k) Hd(X;k) Hd(X,A;k) Hd−1(A;k) · · ·

jd+1

hd+1∼=

∂d+1

fd

id

gd

jd

hd
∼=

∂d

fd−1

id−1

j′d+1 ∂′
d+1 i′d j′d ∂′

d
i′d−1

From this, we can apply Lemma 5.1.4 below (the Barratt–Whitehead lemma) to obtain our Mayer–
Vietoris sequence. The connecting homomorphisms Hd(X;k) → Hd−1(A∩B;k) are ∂d◦(hd)−1◦j′d. □

The above proof used:

Lemma 5.1.4 (Barratt–Whitehead lemma). Let
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· · · Rd+1 Id Bd Rd Id−1 · · ·

· · · R′
d+1 Ad Xd R′

d Ad−1 · · ·

jd+1

hd+1∼=

∂d+1

fd

id

gd

jd

hd
∼=

∂d

fd−1

id−1

j′d+1 ∂′
d+1 i′d j′d ∂′

d
i′d−1

be a commutative diagram of abelian groups with exact rows such that each hd : Rd → R′
d is an

isomorphism. We then have a long exact sequence

· · · Id Ad ⊕Bd Xd Id−1 · · ·fd⊕id i′d−gd fd−1⊕id−1

whose connecting homomorphisms Xd → Id−1 are ∂d ◦ (hd)−1 ◦ j′d.

Proof. Proving that the indicated sequence is exact is a simple diagram chase that we leave as
an exercise to the reader (see Exercise 5.6.1). □

5.2. Suspension

Our first application of Mayer–Vietoris is to suspensions. Let X be a topological space. Recall
that the suspension of X is the space

ΣX = X × [−1, 1] ∼ where ∼ collapses X ×−1 and X × 1 to two points.

The images of X×−1 and X×1 in ΣX are called the top and bottom suspension points, respectively:

X ΣX

Example 5.2.1. For n ≥ 0 we have ΣSn ∼= Sn+1. The suspension points correspond to the north
and south poles. □

We have the following, which generalizes the isomorphisms H̃d(Sn;k) ∼= H̃d+1(Sn+1;k) constructed
in our calculation of the homology of spheres (c.f. Lemma 2.3.7).

Lemma 5.2.2. For a space X, we have H̃d(X;k) ∼= H̃d+1(ΣX;k) for all d.

Proof. Let p and q be the top and bottom suspension points of ΣX. Define A = ΣX \ {p} and
B = ΣX \ {q}. These are open subsets of ΣX with ΣX = A ∪B, so we can apply Mayer–Vietoris
and get a long exact sequence containing

H̃d+1(A;k)⊕ H̃d+1(B;k) H̃d+1(ΣX;k) H̃d(A ∩B;k) H̃d(A;k)⊕ H̃d(B;k).

The terms involving A and B and A ∩B are as follows:

• Both A and B are contractible, so their homology groups all vanish. For instance, A =
ΣX \ {p} deformation retracts to q via the deformation retraction rt : A→ A induced by
the maps X × [−1, 1) → X × [−1, 1) taking (p, s) to (p, (1− t)s).

• A ∩B ∼= X × (−1, 1), so A ∩B ≃ X.

Combining these with the above exact sequence, we see that

H̃d+1(ΣX;k) ∼= H̃d(A ∩B;k) ∼= H̃d(X;k). □

5.3. Removing a point from a manifold

Removing 0 from Rn gives Rn \ 0 ≃ Sn−1, and thus changes the homology in degree n− 1. Using
Mayer–Vietoris, we will show that in general removing a point from an n-manifold does not change
its homology up to degree n− 2:
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Lemma 5.3.1. For some n ≥ 2, let M be an n-manifold and let p ∈ M . Then Hd(M \ p;k) ∼=
Hd(M ;k) for d ≤ n− 2.

Proof. It is enough to prove a similar statement in reduced homology. Let A =M \ p and let
B ∼= Int(Dn) be an open ball around p. Then A and B form an open cover of M with

A ∩B ∼= Int(Dn) \ 0 ≃ Sn−1.

For d ≤ n− 2, the Mayer-Vietoris sequence of this cover contains

H̃d(A ∩B;k) H̃d(A;k)⊕ H̃d(B;k) H̃d(M ;k) H̃d−1(A ∩B;k).

Since d ≤ n− 2 and A ∩B ≃ Sn−1, we have H̃d(A ∩B;k) = 0 and H̃d−1(A ∩B;k) = 0. It follows
that

H̃d(M ;k) ∼= H̃d(A;k)⊕ H̃d(B;k) ∼= H̃d(M \ p;k)⊕ H̃d(Int(Dn);k) ∼= H̃d(M \ p;k). □

5.4. Connect sums of manifolds

Let M1 and M2 be two smooth connected n-dimensional manifolds. Roughly speaking, the
connect sum M1#M2 is obtained by removing open discs from M1 and M2 and gluing the resulting
Sn−1-boundary components together:

=#

There are technical issues with making this rough description precise,1 so we give a slightly different
definition.

Definition 5.4.1. Let M1 and M2 be smooth connected n-dimensional manifolds, possibly with
boundary. Let pi ∈ Int(Mi) and let fi : Rn ↪→ Int(Mi) be an embedding such that fi(0) = pi. If both
M1 and M2 are oriented, then assume that f1 preserves orientations and f2 reverses orientations.2

Then M1#M2 is the space obtained from (M1 \ p1) ⊔ (M2 \ p2) by identifying3

f1(v) with f2(v/∥v∥2) for v ∈ Rn \ 0. □

As can be found in any book smooth manifolds, this is a well-defined smooth manifold that is
orientable precisely when both M1 and M2 are orientable.4 With this definition, we then have:

Theorem 5.4.2. Let M1 and M2 be two smooth connected n-dimensional manifolds. Then for
1 ≤ d ≤ n− 2 we have

Hd(M1#M2;k) = Hd(M1;k)⊕H2(M2;k).

Proof. Let pi ∈ Int(Mi) and fi : Rn ↪→ Int(Mi) be the points and maps used to define the
connect sum. Let A =M1 \ p1 and B =M2 \ p2. We can identify these with open subsets of M1#M2

that cover M1#M2, and A∩B ∼= Rn \0 ≃ Sn−1. The Mayer–Vietoris sequence for this cover contains

H̃d(A ∩B;k) H̃d(A;k)⊕ H̃d(B;k) H̃d(M1#M2;k) H̃d−1(A ∩B;k).

1Namely, how do you choose the gluing map? In high dimensions there is not a canonical choice. This is related
to the existence of exotic smooth structures on spheres; indeed, every exotic Sn can be obtained by gluing two copies

of Dn together along their boundary by a carefully chosen diffeomorphism.
2This ensures that M1#M2 is also oriented.
3Note that the v/∥v∥2 term goes to ∞ as v 7→ 0 and goes to 0 as v 7→ ∞.
4The main point here is that the image of fi is a tubular neighborhood of pi, and oriented/non-oriented tubular

neighborhoods are unique up to isotopy.
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Since A ∩B ≃ Sn−1, for 1 ≤ d ≤ n− 2 we have H̃d(A ∩B;k) = H̃d−1(A ∩B;k) = 0. We conclude
that for these values of d we have

Hd(M1#M2;k) ∼= Hd(A;k)⊕Hd(B;k) = Hd(M1 \ p1;k)⊕Hd(M2 \ p2;k) ∼= Hd(M1;k)⊕Hd(M2;k),

where the final isomorphism uses Lemma 5.3.1. □

Example 5.4.3. Connect summing with Rn has the effect of deleting a point from an n-manifold.
Thus

Rn#Rn ∼= Rn \ 0 ≃ Sn−1 and Sn#Rn ∼= Rn.

This shows that the condition 1 ≤ d ≤ n− 2 is needed in Theorem 5.4.2. Later we will prove that if
M1 and M2 are closed orientable n-manifolds then we actually have

Hd(M1#M2;k) ∼= Hd(M1;k)⊕Hd(M2;k) for 1 ≤ d ≤ n− 1. □

5.5. Smooth Jordan separation theorem

The Jordan separation theorem says that if S ⊂ Sn satisfies S ∼= Sn−1, then Sn \ S has two path
components. We will prove this using Mayer–Vietoris in §6, but if S is smoothly embedded it has a
very short proof. In fact, we can handle arbitrary (n− 1)-dimensional submanifolds:5

Theorem 5.5.1 (Smooth Jordan separation theorem). For some n ≥ 1, let Mn−1 ⊂ Sn be a
connected smoothly embedded (n− 1)-dimensional submanifold. Then Sn \Mn−1 has two components.

Proof. This is trivial if n = 1, so we can assume that n ≥ 2. to prove that6 H̃0(Sn \Mn−1) = Z
(see Theorem 7.5.1). Let A = Sn \Mn−1 and let B be an open tubular neighborhood of Mn−1, so

B ∼=Mn−1 × (−1, 1) ≃Mn−1.

Then A and B are an open cover of Sn, and

A ∩B ∼=
(
Mn−1 × (−1, 1)

)
\Mn−1 × 0 ≃Mn−1 ⊔Mn−1.

The associated Mayer–Vietoris exact sequence contains the segment

H̃1(Sn) H̃0(A ∩B) H̃0(A)⊕ H̃0(B) H̃0(Sn)

Since H̃1(Sn) and H̃0(B) and H̃0(Sk) vanish, we thus see that

H̃0(A) ∼= H̃0(A ∩B) ∼= H̃0(M
n−1 ⊔Mn−1 ∼= Z. □

5.6. Exercises

Exercise 5.6.1. Prove Lemma 5.1.4 (the Barratt–Whitehead Lemma). □

Exercise 5.6.2. Prove Mayer–Vietoris for reduced homology: if X is a space and A,B ⊂ X are
subspaces such that X = Int(A) ∪ Int(B), then we have a long exact sequence

· · · Hd(A ∩B;k) Hd(A;k)⊕Hd(B;k) Hd(X;k) Hd−1(A ∩B;k) · · · .
Hint: derive it from the usual Mayer–Vietoris theorem. □

Exercise 5.6.3. There are several useful relative versions of the Mayer–Vietoris sequence. Prove
the following by imitating our proof of the absolute version. You will need the long exact sequence of
a triple (see Exercise 2.6.8).

(a) If X is a space and A,B ⊂ X are subspaces such that X = Int(A)∪ Int(B) and C ⊂ A∩B,
then we have a long exact sequence

· · · Hd(A ∩B,C;k) Hd(A,C;k)⊕Hd(B,C;k) Hd(X,C;k) Hd−1(A ∩B,C;k) · · · .

5Just like for spheres, it is not actually necessary that Mn−1 is smoothly embedded. This is a consequence of
the most general form of Alexander duality. We will prove a version of Alexander duality later as a consequence of

Poincaré duality, but to avoid having to deal with delicate point-set issues we will not prove a version strong enough to

eliminate smoothness here.
6Here again we are using our convention of omitting the coefficients from homology when they are Z.



5.6. EXERCISES 31

(b) If (X,Y ) is a pair and A,B ⊂ Y are subspaces such that Y = Int(A) ∪ Int(B), then we
have a long exact sequence

· · · Hd(X,A ∩B;k) Hd(X,A;k)⊕Hd(X,B;k) Hd(X,Y ;k) Hd−1(X,A ∩B;k) · · · .

We remark that there are more general relative version of Mayer–Vietoris as well, but they are more
awkward to prove directly from the axioms of homology. □





CHAPTER 6

Classical geometric applications of homology

We have already given several classical applications of homology:

• the Brouwer Fixed Point theorem (Theorem 2.4.1); and
• the invariance of dimension (Corollary 2.5.4); and
• the smooth Jordan separation theorem (Theorem 5.5.1).

This chapter is devoted to some deeper applications that depend on more subtle uses of the Mayer-
Vietoris exact sequence and the homology of spheres. In some sense it is a digression from our main
text and a more theoretically minded reader might prefer to skip ahead, but these topics were among
the original motivating examples for this theory. Fix an abelian group k.

6.1. Removing a ball from a sphere

Removing a point from Sn yields the contractible space Rn. This is not true if you thicken the
point up: there exist embeddings f : Dm → Sn whose complement is not simply-connected.1 However,
the following shows that some vestige of contractibility remains:

Theorem 6.1.1. For some 0 ≤ m ≤ n, let D ⊂ Sn satisfy D ∼= Dm. Then H̃d(Sn \D;k) = 0 for
all d.

What makes this theorem difficult is that we are not assuming anything about how D is embedded
in Sn. Many natural assumptions about how D is embedded make the proof far easier. Here is an
example:

Lemma 6.1.2. For some 0 ≤ m ≤ n, let f : Rn ↪→ Sn be an open embedding and let D = f(Dm),
where

Dm = Dm × 0 ⊂ Rm × Rn−m = Rn.

Then H̃d(Sn \D;k) = 0 for all d.

Proof. Set X = Sn \ {f(0)} ∼= Rn. Let A = Sn \D and B = f(Rn \ {0}). The sets A and B
are open sets that cover X, so we have a Mayer-Vietoris sequence

H̃d+1(X;k) → H̃d(A ∩B;k) → H̃d(A;k)⊕ H̃d(B;k) → H̃d(X;k).

Since X ∼= Rn is contractible, this gives an isomorphism

H̃d(A ∩B;k)
∼=→ H̃d(A;k)⊕ H̃d(B;k).

The space B = f(Rn \ {0}) deformation retracts to A∩B = f(Rn \Dm), so the map H̃d(A∩B;k) →
H̃d(B;k) is an isomorphism. We conclude that H̃d(A;k) = 0, as desired. □

We now prove the general case of Theorem 6.1.1.

Proof of Theorem 6.1.1. The proof will be by induction on m. The base case m = 0 is trivial
since D ∼= D0 is a point and thus removing D from Sn yields the contractible space Rn. Assume now

that m ≥ 1 and that the theorem is true for smaller m. Consider some z ∈ H̃d(Sn \D;k). Our goal
is to prove that z = 0.

Assume that z ̸= 0. Identify Dm with the cube Im, and let f : Im → D be a homeomorphism.
For J ⊂ I, write Sn(J) = Sn \ f(J × Im−1). What we will do is construct a decreasing sequence

I = J1 ⊃ J2 ⊃ J3 ⊃ · · ·

1For instance, the Alexander horned ball.
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of closed intervals whose lengths go to 0 such that the image of z in H̃d(Sn(Ji);k) is nonzero for all i:

J3 } J2}J1

This will imply the theorem. Indeed, since the Ji are compact subsets of I whose diameter goes to 0,
their intersection is a single point:

∞⋂
i=1

Ji = {a}.

We have

Sn(J1) ⊂ Sn(J2) ⊂ Sn(J3) ⊂ · · · and

∞⋃
i=1

Sn(Ji) = Sn(a),

so by the continuity of homology we have

lim−→
i

H̃d(Sn(Ji);k) = H̃d(Sn(a);k).

Since z maps to a nonzero element in each H̃d(Sn(Ji);k), it maps to a nonzero element of H̃d(Sn(a);k).
But our inductive hypothesis says that

H̃d(Sn(a);k) = H̃d(Sn \ f(a× Im−1)) = 0,

contradiction.
It remains to construct the Ji. Set J1 = I, and assume that we have constructed Ji = [x, y] for

some i ≥ 1. Set b = (x+ y)/2, and define

J ′
i = [x, b] and J ′′

i = [b, y].

See here:

b
J'i

J''i

The space Sn(b) is the union of the open sets Sn(J ′
i) and Sn(J ′′

i ), whose intersection is Sn(Ji). The
Mayer–Vietoris sequence of this cover takes the form

H̃d+1(Sn(b);k) → H̃d(Sn(Ji);k) → H̃d(Sn(J ′
i);k)⊕ H̃d(Sn(J ′′

i );k) → H̃d(Sn(b);k).

By our inductive hypothesis, both H̃d+1(Sn(b);k) and H̃d(Sn(b);k) vanish, so we conclude that the
map

H̃d(Sn(Ji);k) → H̃d(Sn(J ′
i);k)⊕ H̃d(Sn(J ′′

i );k)

is an isomorphism. The element z maps to a nonzero element of H̃d(Sn(Ji);k), so it must map to a

nonzero element of either H̃d(Sn(J ′
i);k) or H̃d(Sn(J ′′

i );k). We can therefore let Ji+1 be either J ′
i or

J ′′
i , depending on which of these terms z maps nontrivially to. □
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6.2. Removing a sphere from a sphere, and the Jordan separation theorem

Our next theorem is as follows:

Theorem 6.2.1. For some 0 ≤ m < n, let S ⊂ Sn satisfy S ∼= Sm. Then

H̃d(Sn \ S;k) =

{
k for d = n−m− 1,

0 otherwise.

In the special case m = n− 1 and k = Z, we have H̃0(Sn \ S) = Z. This implies that Sn \ S has
two path components, and we deduce the following (c.f. Theorem 5.5.1):

Corollary 6.2.2 (Jordan separation theorem). For some n ≥ 1, let S ⊂ Sn satisfy S ∼= Sn−1.
Then Sn \ S has two path components.

Proof of Theorem 6.2.1. The proof is by induction on m. For the base case m = 0, the
subspace S satisfies S ∼= S0, i.e., S has two points. It follows that Sn \ S ∼= Rn \ {0} ≃ Sn−1, whose
reduced homology is nonzero precisely in dimension n− 1, as desired.

Assume now that m ≥ 1 and that the theorem is true for smaller m. Let f : Sm → S be a
homeomorphism. Let Du

∼= Dm be the image in S of the closed upper hemisphere of Sm, let Dℓ
∼= Dm

be the image of the closed lower hemisphere, and let S′ ⊂ S be the image of the equator Sm−1 ⊂ Sm.
We thus have Du ∩ Dℓ = S′. The space Sn \ S′ is covered by the open sets A = Sn \ Du and
B = Sn \Dℓ, and A ∩B = Sn \ S. The Mayer–Vietoris sequence thus contains the segment

H̃d+1(A;k)⊕ H̃d+1(B;k) → H̃d+1(Sn \ S′;k) → H̃d(Sn \ S;k) → H̃d(A;k)⊕ H̃d(B;k).

Theorem 6.1.1 says that all the reduced homology groups of A and B vanish, so we get an isomorphism

H̃d+1(Sn \ S′;k) ∼= H̃d(Sn \ S;k)

Since S′ ∼= Sm−1, our inductive hypothesis says that

H̃d+1(Sn \ S′;k) =

{
k if d+ 1 = n− (m− 1)− 1,

0 otherwise.

The theorem follows. □

6.3. Invariance of domain

The following theorem feels like it should be either trivial or false. Surprisingly, I am not aware
of a proof that does not use something like the Jordan separation theorem.

Theorem 6.3.1 (Invariance of domain). For some n ≥ 1, let X ⊂ Rn be a set such that there
exists an open set U ⊂ Rn with U ∼= X. Then X is an open subset of Rn.

Proof. Embedding Rn into Sn, we can assume that X is actually a subset of Sn. Consider a
point p ∈ X. Let f : U → X be a homeomorphism. Set q = f−1(p), and let B ⊂ U be an open ball
containing q whose closure B lies in U . It is enough to prove that f(B) is open in Sn:

f
q

B

∂B
_

p

X

f(B)

f(∂B)
_

Theorem 6.1.1 says that H̃0(Sn \ f(B);k) = 0, so Sn \ f(B) is path-connected. Since B is path-
connected, its image f(B) is also path-connected. Since ∂B ∼= Sn−1, Corollary 6.2.2 (Jordan
separation theorem) implies that f(∂B) separates Sn into two path components. We have

Sn \ f(∂B) =
(
Sn \ f(B)

)
⊔ f(B).
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Since both Sn \ f(B) and f(B) are path-connected, these must be the two path components. Since
Sn \ f(∂B) is an open subset of the locally path connected space Sn, its path components are also
open. We conclude that f(B) is open, as desired. □

This has the following curious corollary:

Corollary 6.3.2. Let f : Mn → Nn be an embedding from a closed n-manifold Mn to a
connected n-manifold Nn. Then f is a homeomorphism.

This implies, for instance, the seemingly trivial fact that you cannot embed a closed n-manifold
into Rn.

Proof of Corollary 6.3.2. It is enough to prove that f is surjective. For this, since Mn

is connected it is enough to prove that f(Mn) is both open and closed. It is closed since Mn is
compact, so the essential thing to prove is that it is open. For this, consider a point p ∈ f(Mn). Set
q = f−1(p), and choose a neighborhood W of q that is homeomorphic to an open set U ⊂ Rn. Since
f is a homeomorphism, f(W ) is also homeomorphic to U ⊂ Rn, so by Theorem 6.3.1 the set f(W ) is
an open neighborhood of q in Nn. The corollary follows. □

6.4. Commutative division algebras

Am algebra over a field F is an F-vector space A equipped with a bilinear multiplication map
A × A → A. We write this multiplicatively: for a, b ∈ A, the product of a and b is a · b. Here are
some standard properties that an algebra A might have:

• it is associative if (a · b) · c = a · (b · c) for all a, b, c ∈ A.
• it is commutative if a · b = b · a for all a, b ∈ A.
• it unital if there is some 1 ∈ A called the unit with 1 ·a = a · 1 = a for all a ∈ A.

A deeper property is:

• it is a division algebra for all nonzero a ∈ A and all b ∈ A, there exists a unique c ∈ A with
a · c = b and a unique d ∈ A with d · a = b.

This condition can be rephrased as saying that for all nonzero a ∈ A, the maps A→ A given by left-
and right-multiplication by a are bijective. If A is finite-dimensional over F, then this is equivalent
to them being injective, i.e., to A having no zero-divisors.

Finite-dimensional associative unital division algebras over F can be classified using algebraic
tools. For instance, if they are also commutative then they are the same as finite field extensions of
F. As an example of this, Q[

√
2] is an associative commutative unital division algebra over Q. It is

also easy to see that the only associative commutative unital division algebras over R are R and C.
More generally, a classical theorem of Frobenius says that the only associative unital division algebra
over R that is non-commutative is the algebra of quaternions.

These algebraic approaches all require associativity, and classifying non-associative division
algebras over R seems to require topology. The ultimate theorem in this direction is a deep theorem
of Kervaire and Milnor saying that the only finite-dimensional unital division algebras over R are:

• the commutative associative algebras R and C; and
• the associative algebra of quaternions; and
• the non-associative algebra of octonions.

We will prove a special case of this that goes back to Hopf:

Theorem 6.4.1. Let A be a finite-dimensional commutative unital division algebra over R. Then
A is isomorphic to either R or C. In particular, A is associative.

Proof. If dimR(A) = 1, then A = R and there is nothing to prove. We divide the rest of the
proof into two cases:

Case 1. dimR(A) = 2.

Let 1 ∈ A be the unit. Pick a ∈ A such that {1, a} is a basis for A over R. We can then write
a2 = λ 1+λ′a for some λ, λ′ ∈ R. For κ ∈ R, we have

(a+ κ1)2 = a2 + 2κa+ κ2 1 = (λ 1+λ′a) + 2κa+ κ2 1 = (λ′ + 2κ)a+ (λ+ κ2)1 .
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Replacing a with A− λ′

2 1, we can therefore ensure that a2 = λ 1 for some λ ∈ R.
If λ > 0, then we can write

0 = a2 − λ 1 = (a+
√
λ 1)(a−

√
λ 1).

Since A has no zero divisors, we thus have a = ±
√
λ 1, contradicting the fact that {1, a} are linearly

independent. We thus have λ < 0. Replacing a with 1√
|λ|
a, we have a2 = −1. In other words, A has

a basis {1, a} with a2 = −1, i.e., A ∼= C.

Case 2. dimR(A) ≥ 3.

We will show that this case cannot actually happen. Assume it does. Identify A with Rn for
some n ≥ 3, and let ∥ · ∥ be the standard norm on A = Rn. Define f : Sn−1 → Sn−1 via the formula

f(x) =
x2

∥x2∥
for all x ∈ Sn−1 ⊂ A.

This makes sense since A has no zero-divisors, so x2 ̸= 0. Note that for x ∈ Sn−1 we have

f(−x) = (−x)2

∥(−x)2∥
=

x2

∥x2∥
= f(x).

It follows that f factors through a map f : RPn−1 → Sn−1.
We claim that f is injective. Indeed, consider x, y ∈ Sn−1 with f(x) = f(y). We must prove that

x = ±y. We have

x2

∥x2∥
=

y2

∥y2∥
and hence x2 =

∥x2∥
∥y2∥

y2 = λy2 with λ =
∥x2∥
∥y2∥

positive.

This implies that

0 = x2 − λy2 = (x+
√
λy)(x−

√
λy).

Since A has no zero divisors, we deduce that that x = ±
√
λy. Since x and y both lie on Sn−1, this

implies that x = ±y, as desired.
Since f : RPn−1 → Sn−1 is injective, we can appeal to Corollary 6.3.2 to deduce that f is a

homeomorphism. This is a contradiction;2 for instance, since n ≥ 3 we have π1(RPn−1) = Z/2. □

6.5. Exercises

2Note that it is not a contradiction for n = 2 since RP1 ∼= S1.





CHAPTER 7

One-dimensional CW complexes and the zeroth homology
group

We now begin several chapters that culminate in a complete description of the homology of CW
complexes. This chapter starts with some basic properties of the homology groups of CW complexes.
These are applied to calculate the homology groups of 1-dimensional CW complexes, and YYY

7.1. The dimension of CW complexes

Recall that a CW complex X is at most n-dimensional if it equals its n-skeleton, i.e., X = X(n).
The following shows that the homology of such a CW complex vanishes in dimensions greater than n:

Theorem 7.1.1. Let X be a CW complex of dimension at most n. Then Hd(X;k) = 0 for
d ≥ n+ 1.

Proof. The proof is by induction on n. The base case n = 0 is trivial since in this case X is a
discrete space. Assume, therefore, that n ≥ 1 and that the theorem is true for CW complexes of
dimension at most (n−1). Consider some d ≥ n+1. The long exact sequence of the pair (X,X(n−1))
contains segments of the form

Hd(X
(n−1);k) Hd(X;k) Hd(X,X

(n−1);k)

Our inductive hypothesis says that Hd(X
(n−1);k) = 0. Also, since X = X(n) the quotient space

X/X(n−1) is a wedge of n-spheres, one for each n-cell of X:

/X(1)

Since d ≥ n+ 1, this together with Lemma 4.2.1 implies that

Hd(X,X
(n−1);k) ∼= H̃d(X/X

(n−1);k) = 0.

The theorem follows. □

7.2. Homology carried on the skeleton

The idea of the proof of Theorem 7.1.1 above contains the germ of the idea for how we will
analyze CW complexes in general. Here is another application of that idea:

Lemma 7.2.1. Let X be a CW complex. Then the map Hd(X
(n);k) → Hd(X;k) is an isomorphism

for d < n and a surjection for d = n.

Proof. To simplify our notation, let X(−1) = ∅. By the continuity axiom, the map

lim−→
n

Hd(X
(n);k) → Hd(X;k)

is an isomorphism for all d. It follows that it is enough to prove that the map Hd(X
(n);k) →

Hd(X
(n+1);k) is an isomorphism for d < n and a surjection for d = n.

The long exact sequence of the pair (X(n+1), X(n)) contains the segment

39
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Hd+1(X
(n+1), X(n);k) Hd(X

(n);k) Hd(X
(n+1);k) Hd(X

(n+1), X(n);k).

To prove the lemma, it is therefore enough to prove that Hk(X
(n+1), X(n);k) = 0 for k ≤ n. We have

Hk(X
(n+1), X(n);k) ∼= H̃k(X

(n+1)/X(n);k).

Just like in the proof of Theorem 7.1.1 above, the quotient space X(n+1)/X(n) is a wedge of
(n + 1)-spheres, one for each (n + 1)-cell of X(n+1). It therefore follows from Lemma 4.2.1 that

H̃k(X
(n+1)/X(n);k) = 0 for k ≤ n, as desired. □

7.3. Representing elements of first homology

We now focus attention on homology with coefficients in Z. This requires:

Notation 7.3.1. For each d ≥ 0, fix a generator [Sd] for H̃d(Sd) ∼= Z. There are thus two
choices for [Sd] corresponding to 1 ∈ Z and −1 ∈ Z, and for the purpose of this chapter it is not not
important which choice is made. See Chapter ?? for a broader context for this. □

For a space X, one easy way to give an element of H1(X) is to give a continuous map f : S1 → X,
yielding f∗([S1]) ∈ H1(X). This only depends on the homotopy class of f . The following lemma
shows that it also does not depend on the parameterization:

Lemma 7.3.2. Let X be a space and let f : S1 → X be a continuous map. For all orientation-
preserving homeomorphisms g : S1 → S1, we have f∗([S1]) = (f ◦ g)([S1]).

Proof. It is enough to prove that g is homotopic to the identity. Let ρ : R → R/Z = S1 be
the universal cover and let ∗ = ρ(0) ∈ S1. Homotoping g by composing it with rotations of S1,
we can ensure that g(∗) = ∗. We can then lift g to a map g̃ : R → R satisfying g̃(0) = 0 and
g̃(x+ 1) = g̃(x) + 1 for all x ∈ R. For 0 ≤ t ≤ 1, define g̃t : R → R via

g̃t(x) = (1− t)g̃(x) + tx for x ∈ R.

Since

g̃t(x+ 1) = (1− t)g̃(x+ 1) + t(x+ 1) = (1− t)(g̃(x) + 1) + t(x+ 1) = g̃t(x) + 1,

this descends to a homotopy gt : S1 → S1 from g0 = g to g1 = 1S1 . □

Using this lemma, we can specify elements of H1(X) by drawing oriented but unparameterized
circles ℓ in X. Letting f : S1 → ℓ be an orientation-preserving parametization, we can then define
[ℓ] = f∗([S1]).

Example 7.3.3. Let Σ2 be a compact oriented genus 2 surface and let ℓ1 and ℓ2 be:

ℓ1
ℓ2

We then have [ℓ1], [ℓ2] ∈ H1(Σ2). □

7.4. One-dimensional CW complexes

Let X be a connected 1-dimensional CW complex, i.e., a connected graph. Our goal is to describe
Hd(X).
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7.4.1. One vertex. The easiest case is where X has one 0-cell v. Each 1-cell is thus a loop
based at v. Let E(X) be the set of 1-cells of X, so X is a wedge of circles, one for each e ∈ E(X):

e2

e1 e3

ℰ(X) = {e1,e2,e3}

v

We thus have

H̃d(X) ∼= H̃d(
∨

e∈E(X)

S1) ∼=
⊕

e∈E(X)

H̃d(S1) =

{⊕
e∈E(X) Z if d = 1,

0 otherwise.

Orient each e in an arbitrary way,1 and regard e as an oriented loop in X. We thus have [e] ∈ H1(X).
Recall that for a set S, we denote by Z⟨S⟩ the free abelian group of formal Z-linear combinations of
elements of S. We then have H1(X) ∼= Z⟨E(X)⟩, where e ∈ E(X) corresponds to [e] ∈ H1(X).

7.4.2. Maximal trees and loops. Now assume that X is an arbitrary connected 1-dimensional
CW complex. Our identification of its homology is less canonical than the case where there is only
one 0-cell, and depends on the choice of a maximal tree T in X, i.e., a connected subgraph of X
with no cycles that contains every vertex of X.

Let E(X,T ) be the set of 1-cells of X that do not lie in T . Orient each e ∈ E(X,T ) in an
arbitrary way, and let δe be a path in T from the endpoint of e to the initial point of e. Since T is
contractible, this is unique up to homotopies through such paths. Define γT,e to be the oriented loop
in X that starts at the initial point of e, goes along e, and then goes back along δe:

e

T
δe

Here the tree is red and the edges of E(X,T ) are black. The element [γT,e] ∈ H1(X) depends only
on T and e.

7.4.3. Homology of graph. With the above notation, we have:

Theorem 7.4.1. Let X be a connected 1-dimensional CW complex and let T be a maximal tree
in X. Then

H̃d(X) ∼=

{
Z⟨E(X,T )⟩ if d = 1,

0 otherwise,

where e ∈ E(X,T ) corresponds to [γT,e] ∈ H̃1(X).

Proof. Since T is contractible, Corollary 4.1.8 implies that H̃d(X) ∼= H̃d(X/T ) for all d. The
space X/T is a wedge of circles, one for each edge of E(X,T ). See here, where the tree T is black
and the edges of E(X,T ) are in other colors:

T /T

By §7.4.1, we have

H̃d(X/T ) ∼=

{
Z⟨E(X,T )⟩ if d = 1,

0 otherwise,

1There is actually a natural orientation since e is a 1-cell D1
e attached via an attaching map fe : ∂D1

e → X(0), so e

goes from fe(−1) to fe(1).
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The isomorphism H1(X) → H1(X/T ) takes [γT,e] to the loop corresponding to e. The theorem
follows. □

7.5. Zeroth homology

We are finally in a position to calculate H0(X) when X has the homotopy type of a CW complex:

Theorem 7.5.1. Let X have the homotopy type of a CW complex and let I be the set of path

components of X. Then H0(X) ∼= ZI . In particular, if X is path-connected then H̃0(X) = 0.

Proof. By homotopy invariance and the additivity axiom, it is enough to prove that H̃0(X) = 0
if X is a path-connected CW complex. To do this, by Lemma 7.2.1 it is enough to prove that

H̃0(X
(1)) = 0. Since X(1) is a connected graph, this follows from Theorem 7.4.1. □

7.6. Exercises



CHAPTER 8

Two-dimensional CW complexes and the first homology group

In this chapter, we explain how to calculate Hd(X) for a CW complex of dimension at most 2.
We will later generalize this approach to handle arbitrary CW complexes and arbitrary coefficient
systems. As a byproduct of our work, we will prove that H1(X) is isomorphic to the abelianization
of π1(X) for an arbitrary connected CW complex.

8.1. Two-dimensional CW complexes

Consider a connected two-dimensional CW complex X. We showed in §8.3 how to calculate the
homology groups of X(1), and in this section we describe how the homology changes when we attach
the 2-cells to form X.

8.1.1. Main result. Let Ccell
2 (X) be the free abelian group consisting of formal Z-linear

combinations of 2-cells of X. For each 2-cell D2
i , let fi : ∂D2

i → X(1) be its attaching map. Since

∂D2
i = S1, we can define a map b : Ccell

2 (X) → H1(X
(1)) via the formula

b(D2
i ) = (fi)∗([S1]) ∈ H1(X

(1)) for each 2-cell D2
i .

With this notation, we then have the following. There are three examples after the proof.

Theorem 8.1.1. Let X be a connected 2-dimensional CW complex and let b : Ccell
2 (X) →

H1(X
(1)) be as above. Then we have

H̃d(X) =


ker(b) if d = 2,

coker(b) if d = 1,

0 otherwise.

Proof. Since X is 2-dimensional, Theorem 7.1.1 implies that its homology groups vanish above
degree 2, so we only need to calculate Hd(X) for d ≤ 2. The long exact sequence of the pair (X,X(1))
contains the segment

H2(X
(1)) H2(X) H2(X,X

(1)) H1(X
(1)) H1(X) H1(X,X

(1)).

By Theorem 7.4.1, we have H2(X
(1)) = 0. Since X = X(2), the space X/X(1) is a wedge of 2-spheres,

one for each 2-cell of X:

/X(1)

Let [Dn] ∈ Hn(Dn, ∂Dn) be the element mapping to [Sn−1] under the isomorphism Hn(Dn, ∂Dn) ∼=
H̃n−1(∂Dn) coming from the long exact sequence of the pair (Dn, ∂Dn). We then have that

Hd(X,X
(1)) ∼= H̃d(X/X

(1)) ∼=

{
Ccell

2 (X) if d = 2,

0 otherwise,

43



44 8. TWO-DIMENSIONAL CW COMPLEXES AND THE FIRST HOMOLOGY GROUP

where for a 2-cell D2
i of X the element of H̃d(X,X

(1)) corresponding to D2
i ∈ Ccell

2 (X) is the image
of [D2] under the map of pairs ϕi : (D2

i , ∂D2
i ) → (X,X(1)) that attaches D2

i to X(1). Plugging all of
this into our exact sequence, we get

0 H2(X) Ccell
2 (X) H1(X

(1)) H1(X) 0.b′

This will prove the theorem once we verify that the map b′ : Ccell
2 (X) → H1(X

(1)) in the above exact
sequence is b. For this, note that the restriction of ϕi : (D2

i , ∂D2
i ) → (X,X(1)) to ∂D2

i is the attaching
map fi : ∂D2

i → X(1). We thus have b(D2
i ) = (fi)∗([S1]). Consider the commutative diagram

H2(D2
i , ∂D2

i ) H1(∂D2
i )

H2(X,X
(1) Ccell

2 (X) H1(X
(1))

∼=

(ϕi)∗ (fi)∗

∼= b′

The map (ϕi)∗ takes [D2
i ] to the element of H2(X,X

(1)) corresponding to D2
i ∈ Ccell

2 (X). It follows
that b′(D2

i ) = (fi)∗([S1]), as desired. □

8.1.2. Examples. To understand the previous theorem, we give two examples.

Example 8.1.2. Let X be the following contractible 2-complex:

𝜏1 𝜏2
𝜏3

Our theorem gives an exact sequence

0 H2(X) Z⟨τ1, τ2, τ3⟩ H1(X
(1)) H1(X) 0.b

By Theorem 7.4.1, the map b takes the τi to a basis for H1(X
(1)). It follows that b is an isomorphism,

and thus that H2(X) = H1(X) = 0. Of course, we already knew this since X is contractible. □

Example 8.1.3. Consider the torus T 2. Give T 2 the CW complex structure with one 0-cell v,
two 1-cells a and b, and one 2-cell τ :

a

a

v

v

b

v

v

bτ =

Since the 1-skeleton of T 2 is a wedge of two circles, we can identify H1((T
2)(1)) with the abelian

group Z⟨a, b⟩ ∼= Z2 of formal Z-linear combinations of a and b. We also have Ccell
2 (T 2) = Z⟨τ⟩ ∼= Z.

Our theorem therefore says that there is an exact sequence

0 H2(T
2) Z⟨τ⟩ Z⟨a, b⟩ H1(T

2) 0.b

To determine the answer here, we must calculate b(τ). We will explain how to do this in the next
two sections, where we will show that b(τ) = 0 and thus that H2(T

2) ∼= Z and H1(T
2) ∼= Z2. □

8.2. The Hurewicz map

As the examples in the previous section show, for a 1-dimensional CW complex Y and a map
f : S1 → Y we need a way to determine the image of the map f∗ : H1(S1) → H1(Y ) in terms of the
generators for H1(Y ) given by Theorem 7.4.1. The map f gives a loop in Y , and we will actually
prove something more general that will allow us to relate π1(X, p) and H1(X) for arbitrary based
CW complexes (X, p).
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8.2.1. Homotopy groups. To put this into its proper context, we will define this relationship
not just on π1(X, p), but on πd(X, p) for arbitrary d ≥ 1. Let ∗ ∈ Sd be a basepoint lying in the
equator Sd−1 ⊂ Sn. Recall that the dth homotopy group of a based space (X, p) is the set πd(X, p)
of homotopy classes of basepoint-preserving maps (Sd, ∗) → (X, p):

πd(X, p) = [(Sd, ∗), (X, p)].

For f : (Sd, ∗) → (X, p), we denote by [f ] the associated element of πd(X, p). The set πd(X, p) is a
group. For [f ], [g] ∈ π1(X, p), the element [f ] · [g] is the homotopy class of the map

Sd Sd ∨ Sd X,c f∨g

where c is the map that pinches the equator Sd to a point:

c

This is abelian if d ≥ 2, but is typically nonabelian for d = 1.

8.2.2. Hurewicz map. For d ≥ 1 and a based space (X, p), we define the Hurewicz map to be
the set map h : πd(X, p) → Hd(X) defined via the formula

h([f ]) = f∗([Sd]) for f : (Sd, ∗) → (X, p).

This is a homomorphism:

Lemma 8.2.1. Let (X, p) be a based space. For all d ≥ 1, the Hurewicz map h : πd(X, p) → Hd(X)
is a group homomorphism, i.e.,

h([f ] · [g]) = h([f ]) + h([g]) for all f, g : (Sd, ∗) → (X, p).

Proof. Consider f, g : (Sd, ∗) → (X, p). The homology class h([f ] · [g]) is the image of [Sd] under
the map

Hd(Sd) Hd(Sd ∨ Sd) Hd(X),
c∗ (f∨g)∗

where c : Sd → Sd ∨ Sd is the collapse map. Identifying Hd(Sd ∨ Sd) with Hd(Sd)⊕Hd(Sd), this is the
homomorphism

Hd(Sd) Hd(Sd)⊕Hd(Sd) Hd(X).
c∗ f∗+g∗

It is therefore enough to prove that c∗([Sd]) = ([Sd], [Sd]). This follows from the fact that composition
of c with either of the two projection maps Sd ∨ Sd → Sd induces the identity on homology. Indeed,
these compositions are simply the result of collapsing either the upper or lower hemisphere of Sd to
points:

c
or

c

These maps are actually homotopic to the identity via the homotopy that collapses less and less of
the relevant hemisphere. □
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Example 8.2.2. Let 1 : Sd → Sd be the identity map. The Hurewicz map h : πd(Sd, ∗) → Hd(Sd)
takes [1] ∈ πd(Sd, ∗) to [Sd] ∈ Hd(Sd), which generates Hd(Sd) = Z. In fact, as we noted long ago
using degree theory one can show that πd(Sd, ∗) = Z, and h is an isomorphism. □

8.3. The first homology group of CW complexes

Since π1(X, p) is not abelian, the Hurewicz map π1(X, p) → H1(X) cannot be an isomorphism
in general. The following theorem says that this non-abelianness the only issue:

Theorem 8.3.1 (Hurewicz for fundamental group). Let X be a path-connected space that has
the homotopy type of a CW complex. Then for each p ∈ X the Hurewicz map h : π1(X, p) → H1(X)
induces an isomorphism

(π1(X, p))
ab ∼= H1(X).

Proof. We can assume without loss of generality that X is a CW complex and that p ∈ X(0).
Lemma 7.2.1 says that the inclusion X(2) ↪→ X induces an isomorphism H1(X

(2)) ∼= H1(X), and
when we discussed how to calculate the fundamental group of a CW complex we also showed that the
induced map π1(X

(2), p) → π1(X, p) is an isomorphism. These isomorphisms are compatible with
the Hurewicz map in the sense that the diagram

π1(X
(2), p) π1(X, p)

H1(X
(2)) H1(X)

∼=

h h

∼=

commutes. We can assume therefore without loss of generality that X is 2-dimensional. We now
divide the proof into two steps.

Step 1. The CW complex X satisfies X = X(1).

Since X is connected, its 1-skeleton X(1) is a connected graph. Let T be a maximal tree in X(1).
Since T is contractible, Corollary 4.1.8 implies that the map H1(X) → H1(X/T ) is an isomorphism.
Letting ∗ be the basepoint of X/T , the map π1(X, p) → π1(X/T, ∗) is also an isomorphism. These
isomorphisms are compatible with the Hurewicz map just like above, so without loss of generality we
can replace X with X/T and assume that X has only one 0-cell p. In other words, letting E(X) be
the set of 1-cells of X the space X is a wedge of circles, one for each e ∈ E(X):

e2

e1 e3

ℰ(X) = {e1,e2,e3}

v

The group π1(X, p) is isomorphic to the free group F (E(X)) on the set E(X), with e ∈ E(X)
corresponding to the loop γe : S1 → X around the circle corresponding to e. As we discussed in §7.4.1,
we have H1(X) ∼= Z⟨E(X)⟩. Under these identifications, the Hurewicz map h : π1(X, p) → H1(X) is
the evident map F (E(X)) → Z⟨E(X)⟩, which is indeed the abelianization map.

Step 2. The CW complex X satisfies X = X(2).

Let {D2
i }i∈I be the set of 2-cells of X. For i ∈ I, let fi : ∂D2

i → X(1) be the attaching map of D2
i

and let D2

i be the image of D2
i in X. By Theorem 8.1.1, the map H1(X

(1)) → H1(X) is surjective
and its kernel is generated by elements of the form (fi)∗([S1]).

By the Seifert–van Kampen theorem, attaching 2-cells to a space imposes relations on its
fundamental group, so the map π1(X

(1), p) → π1(X, p) is also surjective. We therefore have a
commutative diagram

π1(X
(1), p) (π1(X

(1), p))ab H1(X
(1))

π1(X, p) (π1(X, p))
ab H1(X)

∼=
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whose horizontal rows are the Hurewicz maps. To prove that the Hurewicz map induces an
isomorphism (π1(X, p))

ab ∼= H1(X), it is therefore enough to prove that the preimage of each
(fi)∗([S1]) ∈ H1(X

(1)) in (π1(X
(1), p))ab maps to 0 in (π1(X, p))

ab.
Identifying ∂D2

i with S1, the loop fi : S1 → X(1) does not define an element of π1(X
(1), p) since

it is not a based loop, i.e., it does not take the basepoint ∗ ∈ S1 to p. Consider a path δi in X
(1)

from p to fi(∗). We then have an element γi,δi of π1(X
(1), p) that goes along δi from p to fi(1), then

goes around fi, and then goes back to p along δi in the reverse direction:

fi(∗)
𝔻2i

pδi

Attaching D2
i to X(1) via fi kills the element of π1(X

(1), p) corresponding to γi,δi . This maps to

(fi)∗([S1]) ∈ H1(X
(1)), and the theorem follows. □

8.4. Closed surfaces

We now revisit the second example from after Theorem 8.1.1 and explain how to complete the
calculations in it.

Example 8.4.1. Consider the torus T 2. Give T 2 the CW complex structure with one 0-cell v,
two 1-cells a and b, and one 2-cell τ :

a

a

v

v

b

v

v

bτ =

Since the 1-skeleton of T 2 is a wedge of two circles, we can identify H1((T
2)(1)) with the abelian

group Z⟨a, b⟩ ∼= Z2. Theorem 8.1.1 gives an exact sequence

0 H2(T
2) Z⟨τ⟩ Z⟨a, b⟩ H1(T

2) 0.b

Here b(τ) is the image of [S1] under the attaching map f : ∂D2 → (T 2)(1) of τ . This attaching map
corresponds to the element aba−1b−1 ∈ π1((T

2)(1), v), and under the Hurewicz map this goes to

a+ b− a− b = 0

in H1((T
2)(1)) = Z⟨a, b⟩. We conclude that b(τ) = 0, so H2(T

2) ∼= Z and H1(T
2) ∼= Z2. Both a and

b are oriented loops in T 2, and [a] and [b] form a basis for H1(T
2). □

This example can be generalized to handle any 2-dimensional CW complex. We give the details
for closed surfaces.

Example 8.4.2. Consider a closed oriented genus-g surface Σg. We can construct Σg by taking
a 4g-gon and identifying its sides together in pairs. For instance, Σ2 is:
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=

a1

a2

a1a2

b1

b1

b2

b2

τ

a2

a1 b2

b1

This gives a CW complex structure on Σg. In the general case, it has:

• one 0-cell v; and
• 1-cells {a1, b1, . . . , ag, bg}, each going from v to v; and
• one 2-cell τ , attached to the 1-skeleton by identifying τ to a 4g-gon and gluing its edges to
the 1-skeleton according to the pattern

(8.4.1) (a1b1a
−1
1 b−1

1 ) · · · (agbga−1
g b−1

g ),

just like in the above figure.

Since the 1-skeleton of Σg is a wedge of 2g circles, we can identity H1((Σg)
(1)) with the abelian group

Z⟨a1, b1, . . . , ag, bg⟩. Theorem 8.1.1 gives an exact sequence

0 H2(Σg) Z⟨τ⟩ Z⟨a1, b1, . . . , ag, bg⟩ H1(Σg) 0.b

Here b(τ) is the image of [S1] under the attaching map f : ∂D2 → (Σg)
(1) of τ . This attaching map

corresponds to the element (8.4.1) in π1((Σg)
(1), v) and under the Hurewicz map this goes to

(a1 + b1 − a1 − b1) + · · ·+ (ag + bg − ag − bg) = 0

in H1((Σg)
(1)). We conclude that b(τ) = 0, so H2(Σg) ∼= Z and H1(Σg) ∼= Z2g. The ai and bi are

oriented loops on Σg, and the [ai] and [bi] form a basis for H1(T
2). □

Example 8.4.3. Consider the real projective plan RP2. Give RP2 the CW complex structure
with one 0-cell v, one 1-cell a, and one 2-cell τ :

vτ

a

a

v

Since the 1-skeleton of RP2 is a circle, we can identify H1(RP2) with the abelian group Z⟨a⟩ ∼= Z.
Theorem 8.1.1 gives an exact sequence

0 H2(RP2) Z⟨τ⟩ Z⟨a⟩ H1(RP2) 0.b

Here b(τ) is the image of [S1] under the attaching map f : ∂D2 → (RP2)(1) of τ . This attaching map
corresponds to the element aa ∈ π1((RP2)(1), v), and under the Hurewicz map this goes to

a+ a = 2a

in H1((RP2)(1) = Z⟨a⟩. We conclude that b(τ) = 2a, so H2(RP2) = 0 and H1(RP2) ∼= Z/2. Regarding
a as an oriented loop in RP2, the element [a] generates H1(RP2). □

Example 8.4.4. Consider the connect sum Sr of r copies of RP2. We can construct Sr by taking
a 2r-gon and identifying its sides together in pairs. For instance, S2 is:
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=
a1

a2

a1a2 τ

a2a1

Here the ×’s are crosscaps: you remove the indicated discs, and then identify antipodal points in the
boundary. The loops passing through the crosscaps are orientation-reversing loops, and as you pass
through the crosscap, your notions of left and right are reversed. This gives a CW complex structure
on Sr. In the general case, it has:

• one 0-cell v; and
• 1-cells {a1, . . . , ar}, each going from v to v; and
• one 2-cell τ , attached to the 1-skeleton by identifying τ to a 2r-gon and gluing its edges to
the 1-skeleton according to the pattern

(8.4.2) a1a1a2a2 · · · arar
just like in the above figure.

Since the 1-skeleton of Sr is a wedge of r circles, we can identity H1((Sr)
(1)) with the abelian group

Z⟨a1, . . . , ar⟩. Theorem 8.1.1 gives an exact sequence

0 H2(Sr) Z⟨τ⟩ Z⟨a1, . . . , ar⟩ H1(Sr) 0.b

Here b(τ) is the image of [S1] under the attaching map f : ∂D2 → (Sr)
(1) of τ . This attaching map

corresponds to the element (8.4.2) in π1((Sr)
(1), v) and under the Hurewicz map this goes to

(a1 + a1) + · · ·+ (ar + ar) = 2(a1 + · · ·+ ar)

in H1((Sr)
(1)). We conclude that b is injective, so H2(Sr) = 0 and

H1(Sr) ∼=
Z⟨a1, . . . , ar⟩

Z⟨2(a1 + · · ·+ ar)⟩
∼= Z/2⊕ Zr−1.

The ai are oriented loops on Sr, and the [ai] span H1(Sr) and satisfy the single relation

2 ([a1] + · · ·+ [ar]) = 0. □

8.5. The higher-dimensional Hurewicz theorem

We now briefly discuss the higher-dimensional Hurewicz maps. Recall that a space X is n-
connected if for all d ≤ n, every map Sd → X extends to a map Dd+1 → X. For n = −1 this means
that X is nonempty, for n = 0 it means that X is nonempty and path-connected, and for n ≥ 1
it means that X is nonempty, path-connected, and has πd(X, p) = 0 for all p ∈ X. For the higher
homotopy groups, the Hurewicz theorem is as follows:

Theorem 8.5.1 (Hurewicz theorem). For some n ≥ 2, let X be an (n−1)-connected space that has
the homotopy type of a CW complex. Then for each p ∈ X the Hurewicz map h : πn(X, p) → Hn(X)
is an isomorphism.

Proving this requires developing a bit more homotopy theory than we have at this point, so we
postpone it until a later chapter. The following corollary gives one way the Hurewicz theorem can be
used:

Corollary 8.5.2. Let (X, p) be a path-connected based space that has the homotopy type of a

CW complex and let (X̃, p̃) → (X, p) be the universal cover of X. Then π2(X, p) ∼= H2(X̃).

Proof. Passing to covers does not change π2, so since X̃ is 1-connected we can apply Theorem

8.5.1 and see that π2(X, p) ∼= π2(X̃, p̃) ∼= H2(X̃). □
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Remark 8.5.3. The above idea generalizes to give a powerful tool for computing homotopy

groups of spaces that goes back to Serre’s PhD thesis. Consider a space X with a universal cover X̃.
The homotopy groups of X are computed inductively, starting at π1. What you do is construct a
sequence of spaces

X = X[0], X̃ = X[1], X[2], . . .

where X[d] is a generalization of the universal cover called the d-connected cover.1 It has the feature
that X[d] is d-connected, but has the same homotopy groups as X starting in degree d + 1. For
a basepoint p ∈ X, we can then use Theorem 8.5.1 to see that πd+1(X, p) ∼= Hd(X[d];Z). The
homology groups of X[d] can be calculated from X[d− 1] inductively using a tool called the Serre
spectral sequence. The computations are not trivial, but they are remarkably effective. Most modern
tools for computing homotopy groups are generalizations of this method. □

8.6. Exercises

1For d ≥ 2, this is not an actual cover but something more complicated.



CHAPTER 9

CW complexes and cellular homology

We now how to generalize what we did in the previous chapter to calculate the homology of an
arbitrary CW complex.

9.1. The cellular chain complex

Let X be a CW complex and let k be an abelian group. Let Ccell
d (X;k) be the abelian group

consisting of formal k-linear combinations of d-cells of X. As is our usual practice, we will omit the
k if it is Z. We prove:

Theorem 9.1.1. Let X be a CW complex and let k be an abelian group. There are then boundary
maps

∂ : Ccell
d (X;k) → Ccell

d−1(X;k)

making (Ccell
• (X;k), ∂) into a chain complex with

Hd(C
cell
• (X;k)) ∼= Hd(X;k) for all d.

Proof. To simplify our notation in this proof, we will omit the coefficients k from our notation
(even when they are not Z). As we have noted several times already, the quotient X(d)/X(d−1) is a
wedge of d-spheres, one for each d-cell of X:

/X(1)

Using this, we can identify

Hd(X
(d), X(d−1)) ∼= H̃d(X

(d)/X(d−1)) ∼= Ccell
d (X).

Making this identification, define ∂ to be the composition

Hd(X
(d), X(d−1)) Hd−1(X

(d−1)) Hd−1(X
(d−1), X(d−2)).

This makes Ccell
• (X) into a chain complex since the chain of maps making up ∂2 contains

Hd−1(X
(d−1)) Hd−1(X

(d−1), X(d−2)) Hd−2(X
(d−2)),

which vanishes since it forms part of the long exact sequence of the pair (X(d−1), X(d−2)).

We must now prove that Ccell
• (X) computes Hd(X). Define

Zcell
d (X) = ker

(
Hd(X

(d), X(d−1))
∂−→ Hd−1(X

(d−1), X(d−2))
)
,

Bcell
d (X) = Im

(
Hd+1(X

(d+1), X(d))
∂−→ Hd(X

(d), X(d−1))
)
.

Our goal is to construct an isomorphism

Zcell
d (X)/Bcell

d (X) ∼= Hd(X).

The first key observation is:

51
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Claim 1. Zcell
d (X) ∼= Hd(X

(d)).

Proof of claim. Let us give names to the maps making up ∂:

Hd(X
(d), X(d−1)) Hd−1(X

(d−1)) Hd−1(X
(d−1), X(d−2)).∂′ ∂′′

Since X(d−2) is (d− 2)-dimensional, its homology vanishes above degree (d− 2) (see Theorem 7.1.1).
In particular, it vanishes in degree d− 1, so from the long exact sequence of the pair (X(d−1), X(d−2))
we see that the map ∂′′ above is injective. It follows that

Zcell
d (X) = ker

(
Hd(X

(d), X(d−1))
∂′

−→ Hd−1(X
(d−1))

)
.

Now consider the long exact sequence of the pair (X(d), X(d−1)):

Hd(X
(d−1)) Hd(X

(d)) Hd(X
(d), X(d−1)) Hd−1(X

(d−1)).∂′

Again, since X(d−1) is (d− 1)-dimensional its homology vanishes in degree d. We conclude that the
above can be rewritten as

0 Hd(X
(d)) Hd(X

(d), X(d−1)) Hd−1(X
(d−1)).∂′

This implies that indeed we have Zcell
d (X) = ker(∂′) ∼= Hd(X

(d)). □

Note that in the proof of the above claim what we showed was that Zcell
d (X) equals the image of

the map Hd(X
(d)) → Hd(X

(d), X(d−1)), which is injective. During our subsequent calculations, we

will silently identify Zcell
d (X) with Hd(X

(d)) via this identification.

Recall that we are trying to construct an isomorphism from Zcell
d (X)/Bcell

d (X) to Hd(X). The
above claim gives us a natural map

Zcell
d (X) = Hd(X

(d)) −→ Hd(X)

that we will prove induces this isomorphism. In Lemma 7.2.1, we proved that the dth homology
group of X is “carried” on the d-skeleton in the sense that the map Hd(X

(d)) → Hd(X) is surjective.
To prove the theorem, therefore, it is enough to prove:

Claim 2. The kernel of the map Hd(X
(d)) → Hd(X) is Bcell

d (X).

Proof of claim. Lemma 7.2.1 not only says that dth homology group of X is “carried” on the
d-skeleton, but also that all the relations appear in the (d+ 1)-skeleton in the sense that the map
Hd(X

(d+1)) → Hd(X) is an isomorphism. It is enough, therefore, to prove that the kernel of the map

Hd(X
(d)) → Hd(X

(d+1)) is Bcell
d (X). Using the long exact sequence of the pair (X(d+1), X(d)), this

is equivalent to showing that Bcell
d (X) is the image of the map

Hd+1(X
(d+1), X(d)) → Hd(X

(d)).

For this, recall that Bcell
d (X) is the image of the differential

Hd+1(X
(d+1), X(d)) Hd(X

(d)) Hd(X
(d), X(d−1)).

Here as we said before the claim the map Hd(X
(d)) → Hd(X

(d), X(d−1)) is injective and we are
identifying Hd(X

(d)) with its image, so this implies the claim. □

This completes the proof of the theorem. □
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9.2. Boundary maps for integer coefficients

9.3. Boundary maps for arbitrary coefficients

9.4. Functoriality

9.5. Mayer–Vietoris for CW complexes

One nice feature of cellular homology is that it allows an easy proof of a version of Mayer–Vietoris
that applies to covers of CW complexes by subcomplexes (as opposed to open sets):

Theorem 9.5.1 (Mayer–Vietoris). Let X be a CW complex and let A,B ⊂ X be subcomplexes
such that X = A ∪B. Then for all commutative rings k, we have a long exact sequence

· · · → Hd(A ∩B;k) → Hd(A;k)⊕Hd(B;k) → Hd(X;k) → Hd−1(A ∩B;k) → · · ·

Proof. Recall that Ccell
d (X;k) is the free k-module on the d-cells of X. Since every cell of X

lies in A or B, the evident map

Ccell
d (A;k)⊕ Ccell

d (B;k) → Ccell
d (X;k)

is surjective. The kernel of this map is generated by elements of the form (σ,−σ) for σ a d-cell of

A ∩B, and thus is isomorphic to Ccell
d (A ∩B;k). The resulting short exact sequences of k-modules

commute with the differentials in the cellular chain complex, and thus assemble into a short exact
sequence

0 −→ Ccell
• (A ∩B;k) −→ Ccell

• (A;k)⊕ Ccell
• (B;k) −→ Cd(X;k) −→ 0

of chain complexes. Applying the snake lemma, we obtain the desired long exact sequence. □

Remark 9.5.2. If in the setting of Theorem 9.5.1 we have A ∩ B ̸= ∅, then we also get a
Mayer–Vietoris sequence in reduced homology:

· · · → H̃d(A ∩B;k) → H̃d(A;k)⊕ H̃d(B;k) → H̃d(X;k) → H̃d−1(A ∩B;k) → · · · . □

9.6. Exercises





CHAPTER 10

Universal coefficients for homology

The universal coefficients theorem explains how Hd(X;k) for different k are related, at least for
CW complexes. Fundamentally, it is a piece of homological algebra. In this chapter, we will freely
use properties of the Tor-functor discussed in Appendix 15.

10.1. Universal coefficients, homological algebra version

Let C• be a chain complex of abelian groups and let A be an abelian group. One might expect
that

Hd(C• ⊗A) ∼= Hd(C•)⊗A for all d.

However, this is not necessarily true. Here is an example:

Example 10.1.1. For an integer ℓ ≥ 2, let C• be the chain complex

0 Z Z 0
×ℓ

whose Z-terms appear in degrees 0 and 1. Then C• ⊗Z/ℓ is the chain complex

0 Z/ℓ Z/ℓ 0,
×0

so

Hd(C•)⊗ Z/ℓ =

{
Z/ℓ if d = 0,

0 otherwise
and Hd(C• ⊗Z/ℓ) =

{
Z/ℓ if d = 0, 1,

0 otherwise.
□

The issue is that the tensor product is right exact but not exact, i.e., if

0 M1 M2 M3 0

is a short exact sequence of abelian groups and A is another abelian group, then

M1 ⊗A M2 ⊗A M3 ⊗A 0

is exact but the map M1 ⊗A→M2 ⊗A need not be injective. The correction terms are given by
the Tor functor discussed in Appendix 15. Namely, we have an exact sequence

0 Tor(M1, A) Tor(M2, A) Tor(M3, A) M1 ⊗A M2 ⊗A M3 ⊗A 0.

This should be viewed as the “derived tensor product”, and you should expect it to appear whenever
you are doing homological algebra with tensor products.

Our main result in this direction is as follows:

Theorem 10.1.2 (Universal coefficients for chain complexes). Let C• be a chain complex of free
abelian groups and let A be an abelian group. Then for all d we have a natural short exact sequence

0 Hd(C•)⊗A Hd(C• ⊗A) Tor(Hd−1(C•), A) 0.

This exact sequence splits, but not in a natural way.

Remark 10.1.3. The fact that this exact sequence is natural means that if f : C• → C′
• is a map

of chain complexes and g : A→ A′ is a map of abelian groups, then we have an induced commutative
diagram

0 Hd(C•)⊗A Hd(C• ⊗A) Tor(Hd−1(C•), A) 0

0 Hd(C
′
•)⊗A′ Hd(C

′
• ⊗A′) Tor(Hd−1(C

′
•), A

′) 0

55
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whose vertical maps are induced by f and g. That it splits in a non-natural way means that we can
write

Hd(C• ⊗A) ∼= (Hd(C•)⊗A)⊕ Tor(Hd−1(C•), A),

but we cannot do this simultaneously for all chain complexes and abelian groups in a way that is
compatible with the above commutative diagrams. □

Proof of Theorem 10.1.2. Let ∂• be the differential on C•. For each d, define Zd = ker(∂d)
and Bd−1 = Im(∂d). We thus have a short exact sequence of abelian groups

(10.1.1) 0 −→ Zd −→ Cd
∂d−→ Bd−1 −→ 0.

We then have:

Claim 1. Tensoring (10.1.1) with A gives a short exact sequence

0 Zd ⊗A Cd ⊗A Bd−1 ⊗A 0
∂d⊗1A

Proof of claim. Let ι : Zd ↪→ Cd be the inclusion. Tensoring with A is right exact, so we must
prove that the map ι⊗1A : Zd ⊗A→ Cd ⊗A is injective. Since Cd−1 is free abelian, its subgroup Bd−1

is also free abelian. It follows that (10.1.1) splits. This implies the claim. Indeed, let π : Cd → Zd be
a splitting of the inclusion ι : Zd ↪→ Cd, so π ◦ ι = 1Zd

. It follows that π ⊗ 1A : Cd ⊗A→ Zd ⊗A is a
splitting of the map ι⊗ 1A : Zd ⊗A→ Cd ⊗A, so ι⊗ 1A is indeed injective. □

Observe now that the short exact sequences from this claim fit into commutative diagrams

0 Zd ⊗A Cd ⊗A Bd−1 ⊗A 0

0 Zd−1 ⊗A Cd−1 ⊗A Bd−2 ⊗A 0

0

∂d⊗1A

∂d 0

∂d−1⊗1A

In other words, regarding the sequences of abelian groups Z• ⊗A and B• ⊗A as chain complexes
equipped with the differential 0, we have a short exact sequence of chain complexes1

0 Z• ⊗A C• ⊗A B•−1 ⊗A 0.

Since Hd(Z• ⊗A) = Zd ⊗A and Hd(B•−1 ⊗A) = Bd−1 ⊗A, the associated long exact sequence provided
by the snake lemma looks like

· · · Zd ⊗A Hd(C• ⊗A) Bd−1 ⊗A Zd−1 ⊗A · · ·bd+1 bd

Here the connecting homomorphisms are labeled as

bd : Bd−1 ⊗A→ Zd−1 ⊗A.
Letting ιd−1 : Bd−1 → Zd−1 be the inclusion, a bit of reflection shows that bd = ιd−1 ⊗ 1A. It follows
that we can extract from the above long exact sequence a short exact sequence

0 coker(ιd ⊗ 1A) Hd(C• ⊗A) ker(ιd−1 ⊗ 1A) 0.

This is the short exact sequence claimed by the theorem:

Claim 2. For all d, we have

coker(ιd ⊗ 1A) = Hd(C•)⊗A,

ker(ιd−1 ⊗ 1A) = Tor(Hd−1(C•), A).

Proof of claim. Since Cd is a free abelian group, so are its subgroups Zd and Bd. It follows
that

0 Bd Zd Hd(C•) 0
ιd

1Here the notation B•−1 ⊗A means the chain complex B• ⊗A, but with a degree shift to makes its dth term

Bd−1 ⊗A.
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is a free resolution of Hd(C•). Tensoring with A, we get a chain complex that computes Tor:

0 Bd ⊗A Zd ⊗A 0.
ιd⊗1A

We conclude that

coker(ιd ⊗ 1A) = TorZ0 (Hd(C•), A) = Hd(C•)⊗A,

ker(ιd ⊗ 1A) = TorZ1 (Hd(C•), A) = Tor(Hd(C•), A),

implying the claim. □

It remains to prove that our exact sequence

0 Hd(C•)⊗A Hd(C• ⊗A) Tor(Hd−1(C•), A) 0

splits. As notation, let Z(C• ⊗A)d be the kernel of the differential

∂d ⊗ 1A : Cd ⊗A→ Cd−1 ⊗A.
We thus have

Hd(C• ⊗A) = Z(C• ⊗A)d/ (Bd ⊗A) .
Now recall that in the proof of Claim 1 we constructed a splitting π : Cd → Zd of the short exact
sequence

0 Zd Cd Bd−1 0.
∂d

Let h : Zd → Hd(C•) be the map taking a cycle to its homology class, and let h : Z(C• ⊗A)d →
Hd(C•)⊗A be the composition

Z(C• ⊗A)d Cd ⊗A Zd ⊗A Hd(C•)⊗A.
π⊗1A h⊗1A

Since π restricts to the identity on Zd, it in particular restricts to the identity on Bd. It follows that
h vanishes on Bd ⊗A, and thus induces a map

h : Hd(C• ⊗A) → Hd(C•)⊗A.

By construction, this is a splitting of (10.1). □

10.2. Exercises
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