Math 60440: Basic Topology II Problem Set 10

- 1. Let M^n be a closed *n*-dimensional manifold and let \mathbf{k} be either \mathbb{Z} or \mathbb{F}_2 . We say that M^n is \mathbf{k} -orientable if the following hold:
 - $H_n(M^n; \mathbf{k}) \cong \mathbf{k}$; and
 - for all $p \in M^n$, the map

$$\operatorname{H}_n(M^n; \mathbf{k}) \longrightarrow \operatorname{H}_n(M^n, M^n \setminus p; \mathbf{k}) \cong \operatorname{H}_n(\mathbb{R}^n, \mathbb{R}^n \setminus p; \mathbf{k}) \cong \mathbf{k}$$

is an isomorphism.

In this case, an element $[M^n] \in H_n(M^n; \mathbf{k}) \cong \mathbf{k}$ that generates \mathbf{k} is a fundamental class. Later in the class we will prove that all closed orientable *n*-manifolds are \mathbb{Z} -orientable and that all closed *n*-manifolds are \mathbb{F}_2 -orientable. Prove directly that:

- (a) If M^n is \mathbb{Z} -orientable, then it is \mathbb{F}_2 -orientable.
- (b) S^n is \mathbb{Z} -orientable.
- (c) \mathbb{CP}^n is \mathbb{Z} -orientable.
- (d) \mathbb{RP}^n is \mathbb{Z} -orientable if n is odd and is \mathbb{F}_2 -orientable for all n.
- 2. Let **k** be either \mathbb{Z} or \mathbb{F}_2 . Let M^n and N^n both be closed *n*-manifolds that are **k**-orientable. Fix fundamental classes $[M^n]$ and $[N^n]$. For a map $f: M^n \to N^n$, we have

$$f_*([M^n]) = d[N^n]$$

for some $d \in \mathbf{k}$ called the **k**-degree of f. Denote the **k**-degree of f by deg (f, \mathbf{k}) . For $p \in M^n$, define the *local degree* of f at p, denoted deg_p (f, \mathbf{k}) , as follows:

• Consider the map

$$f_*: \operatorname{H}_n(M^n, M^n \setminus p; \mathbf{k}) \to \operatorname{H}_n(N^n, N^n \setminus f(p); \mathbf{k}).$$

Let $[M^n]_p \in H_n(M^n, M^n \setminus p; \mathbf{k})$ and $[N^n]_{f(p)} \in H_n(N^n, N^n \setminus f(p); \mathbf{k})$ be the images of the fundamental classes. The $\deg_p(f, \mathbf{k})$ is the $d \in \mathbf{k}$ such that

$$f_*([M_n]_p) = d[N_n]_{f(p)}.$$

Prove the following:

• Let $q \in N^n$ be a point such that $f^{-1}(q)$ is a finite discrete set. Then

$$\deg(f, \mathbf{k}) = \sum_{p \in f^{-1}(q)} \deg_p(f, \mathbf{k})$$

3. Define a map $f : \mathbb{RP}^{2n} \to \mathbb{CP}^n$ via the formula

$$f([x_0,\ldots,x_{2n}]) = [x_0,x_1+ix_2,x_3+ix_4,\ldots,x_{2n-1}+ix_{2n}].$$

Here we are using homogeneous coordinates. Calculate the map $f^* \colon \mathrm{H}^d(\mathbb{CP}^n;\mathbb{F}_2) \to \mathrm{H}_d(\mathbb{RP}^n;\mathbb{F}_2)$. Hint: start by calculating deg (f,\mathbb{F}_2) , and use the cup product structure.

4. Do Hatcher, Section 3.2, problems 3 and 6.