Math 60440: Basic Topology II Problem Set 2

- 1. (a) Draw a connected directed graph with 4 vertices and 8 edges.
 - (b) Write down the semisimplicial set \mathbb{X} that this picture represents.
 - (c) Explicitly write down the simplicial chain complex

$$\cdots \xrightarrow{\partial} C_2(\mathbb{X}) \xrightarrow{\partial} C_1(\mathbb{X}) \xrightarrow{\partial} C_0(\mathbb{X}).$$

- 2. (a) Explicitly construct a semisimplicial set S whose geometric realization is homeomorphic to a genus-g surface.
 - (b) Explicitly write down the simplicial chain complex

$$\cdots \xrightarrow{\partial} C_2(\mathbb{S}) \xrightarrow{\partial} C_1(\mathbb{S}) \xrightarrow{\partial} C_0(\mathbb{S}).$$

- 3. Let \mathbb{X} be a semisimplicial set that has finitely many simplices (i.e., such that each \mathbb{X}_n is a finite set and $\mathbb{X}_n = \emptyset$ for *n* sufficiently large). Prove that the geometric realization $|\mathbb{X}|$ is compact.
- 4. If X and Y are simplicial sets, then a *morphism* $f \colon X \to Y$ of semisimplicial sets consists of the following:
 - For each $n \ge 0$, a set map $f_n \colon \mathbb{X}_n \to \mathbb{Y}_n$ such that for each strictly increasing function $\iota \colon [m] \to [n]$, the diagram

$$\begin{array}{c} \mathbb{X}_n \xrightarrow{f_n} \mathbb{Y}_n \\ \downarrow^{\iota^*} & \downarrow^{\iota^*} \\ \mathbb{X}_m \xrightarrow{f_m} \mathbb{Y}_m \end{array}$$

commutes.

Prove the following:

- (a) If $f : \mathbb{X} \to \mathbb{Y}$ is a morphism of semisimplicial sets, then there is an induced map $f : |\mathbb{X}| \to |\mathbb{Y}|$ on geometric realizations.
- (b) Letting \mathbb{A}^n denote the semisimplicial set we called the *n*-simplex, for all semisimplicial sets \mathbb{X} there is a bijection between morphisms $\mathbb{A}^n \to \mathbb{X}$ and elements of \mathbb{X}_n .
- 5. Let \mathbb{X} be a semisimplicial set and let $f: \mathbb{Z} \to |\mathbb{X}|$ be a covering space of its geometric realization. Construct a semisimplicial set \mathbb{Z} with $|\mathbb{Z}| = \mathbb{Z}$. Hint: the key thing to check here is that for all simplices Δ in the geometrical realization $|\mathbb{X}|$, the preimage $f^{-1}(\operatorname{Int}(\Delta))$ is a disjoint union of copies of copies of $\operatorname{Int}(\Delta)$. These will each correspond to a simplex of \mathbb{Z} .