Math 60440: Basic Topology II Problem Set 4

- 1. Let A be a subspace of a space X. Assume that A is a retract of X. Prove that the map $H_n(A) \to H_n(X)$ induced by the inclusion $A \hookrightarrow X$ is an injection.
- 2. Prove that being chain homotopic is an equivalence relation on maps between chain complexes.
- 3. Prove that the relative homology group $H_1(\mathbb{R}, \mathbb{Q})$ is free abelian, and identify a basis for it.
- 4. Consider a commutative diagram

of abelian groups. Assume that both rows are exact. Prove the following:

- (a) If f_2 and f_4 are injective and f_1 is surjective, then f_3 is injective.
- (b) If f_2 and f_4 are surjective and f_5 is injective, then f_3 is surjective.
- (c) If f_2 and f_4 are isomorphisms, f_1 is surjective, and f_5 is injective, then f_3 is an isomorphism.
- 5. (a) Let

$$0 \longrightarrow A' \xrightarrow{j} A \xrightarrow{q} \overline{A} \longrightarrow 0$$

be a short exact sequence of abelian groups. Prove that the following three statements are equivalent (in these cases, we say that the short exact sequence *splits*):

- (i) The map q admits a section, i.e. there exists a homomorphism $s \colon \overline{A} \to A$ such that $q \circ s = \text{id}$.
- (ii) The map j admits a retraction, i.e. there exists a homomorphism $r: A \to A'$ such that $r \circ j = id$.
- (iii) There exists a commutative diagram of the form

where f is an isomorphism, i is the natural inclusion, and p is the natural surjection.

- (b) Give an example of a short exact sequence of abelian groups that does not split.
- (c) Let Y be a subspace of a topological space X. Assume that Y is a retract of X. Prove that $H_n(X) \cong H_n(Y) \oplus H_n(X,Y)$ for all n.