Math 60440: Basic Topology II Problem Set 5

- 1. Let G be a finite graph such that no vertex has degree 2. Prove that any homeomorphism $f: G \to G$ must take vertices to vertices (hint: local homology!).
- 2. Let X be a topological space and let ΣX be the suspension of X, i.e., the quotient of $X \times [0, 1]$ that collapses $X \times 0$ to a point and $X \times 1$ to a point.
 - (a) Prove that $\widetilde{H}_n(X) \cong \widetilde{H}_{n+1}(\Sigma X)$ for all n.
 - (b) Prove that under the isomorphism from the previous part, if $f: X \to X$ is a continuous map then $f_*: \widetilde{H}_n(X) \to \widetilde{H}_n(X)$ equals $\Sigma f: \widetilde{H}_{n+1}(\Sigma X) \to \widetilde{H}_{n+1}(\Sigma X)$, where $\Sigma f: \Sigma X \to \Sigma X$ is the map induced from the map $f \times \operatorname{id}: X \times [0, 1] \to X \times [0, 1]$.
 - (c) Let $f: S^n \to S^n$ be the map defined by $f(x_1, \ldots, x_{n+1}) = (-x_1, x_2, \ldots, x_{n+1})$ for $(x_1, \ldots, x_{n+1}) \in S^n \subset \mathbb{R}^{n+1}$. Use the previous part to prove that the degree of f is -1. Hint: do it by induction on n, and start by proving the result directly for n = 0.
- 3. Let X be a finite-dimensional CW complex. Prove the following fact:
 - (a) If X has dimension m, then $H_n(X) = 0$ for n > m and $H_m(X)$ is free abelian.
 - (b) If X has k cells of dimension n, then $H_n(X)$ can be generated by at most k elements.
- 4. For an invertible linear transformation $f : \mathbb{R}^n \to \mathbb{R}^n$, prove that the induced map $f_* \colon H_n(\mathbb{R}^n, \mathbb{R}^n \setminus 0) \to H_n(\mathbb{R}^n, \mathbb{R}^n \setminus 0)$ is multiplication by 1 or -1 depending on whether the determinant of f is positive or negative.
- 5. Compute the homology groups of the following spaces:
 - (a) The quotient of S^2 obtained by identifying the north and south poles to a single point.
 - (b) $S^1 \times (S^1 \vee S^1)$.
 - (c) The quotient of S^2 that identifies each point p in the equator $S^1 \subset S^2$ with -p.