Using the derivative to determine if f is one-to-one

A continuous (and differentiable) function whose derivative is always positive (> 0) or always negative (< 0) is a one-to-one function. Why?

- ▶ Remember the <u>Mean Value Theorem</u> from Calculus 1, that says if we have a pair of numbers x_1 and x_2 which violate the condition for 1-to1ness; namely $x_1 \neq x_2$ and $f(x_1) = f(x_2)$, then there must be some point c in the interval between x_1 and x_2 with f'(c) = 0(assuming that f' exists on the given interval).
- ▶ So if a function *f* always has a strictly positive derivative or a strictly negative derivative, we cannot find a pair of umbers *x*₁ and *x*₂ which violate the condition for 1-to1ness and the function is 1-to-1.
- ► This gives us a new way to check if a differentiable function f is 1-to-1. We calculate the derivative f', if we can tell that it is always positive or always negative then we can conclude that f is a 1-to-1 function.
- Note that if the function is not differentiable of its derivatives are not all strictly positive or strictly negative, we have no conclusion from this "test".

Using the derivative to determine if f is one-to-one

A continuous (and differentiable) function whose derivative is always positive (> 0) or always negative (< 0) is a one-to-one function.

- Example: Let $f(x) = \sqrt{4x+4} = (4x+4)^{1/2}$; is f a one-to-one function?
- Using the chain rule we have

$$f'(x) = rac{1}{2}(4x+4)^{-1/2} \cdot 4 = rac{2}{\sqrt{4x+4}}$$
 on the interval $(-1,\infty)$

- Since f'(x) > 0 for all x on the interval (−1,∞), we can conclude that this function is one-to-one on the interval {x|x > −1}
- ► The domain of f is the interval [-1,∞), however f(-1) = 0 which does to coincide with f(x) for any x in the interval (-1,∞), so our function is one-to-one on its domain.