Worksheet 14, Math 10560

$1 \boldsymbol{R}$ Use the trapezoidal rule with step size $\Delta x=2$ to approximate the integral $\int_{0}^{4} f(x) d x$ where the graph of the function $f(x)$ is given below.

Solution: Note

$$
n=\frac{4-0}{2}=2 .
$$

Then by the trapezoidal rule

$$
\int_{0}^{4} f(x) d x \approx \frac{\Delta x}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+f\left(x_{2}\right)\right)=\frac{2}{2}(2+8+0)=10
$$

$2 \boldsymbol{R}$ Use Simpson's rule with step size $\Delta x=1$ to appoximate the integral $\int_{0}^{4} f(x) d x$ where a table of values for the function $f(x)$ is given below.

x	0	1	2	3	4
$f(x)$	2	1	2	3	5

Solution: $\int_{0}^{4} f(x) d x \approx \frac{\Delta x}{3}[f(0)+4 \cdot f(1)+2 \cdot f(2)+4 \cdot f(3)+f(4)]=\frac{1}{3}[2+4+4+12+5]=$ $\frac{27}{3}=9$.
$3 \boldsymbol{R}$ (a) Circle the letter below alongside the trapezoidal approximation to

$$
\ln 3=\int_{1}^{3} \frac{1}{x} d x \quad \text { using } \quad n=8
$$

A $\quad \int_{1}^{3} \frac{1}{x} d x \approx \frac{1}{8}\left[1+2\left(\frac{4}{5}\right)+2\left(\frac{2}{3}\right)+2\left(\frac{4}{7}\right)+2\left(\frac{1}{2}\right)+2\left(\frac{4}{9}\right)+2\left(\frac{2}{5}\right)+2\left(\frac{4}{11}\right)+\left(\frac{1}{3}\right)\right]$
B $\quad \int_{1}^{3} \frac{1}{x} d x \approx \frac{1}{12}\left[1+4\left(\frac{4}{5}\right)+2\left(\frac{2}{3}\right)+4\left(\frac{4}{7}\right)+2\left(\frac{1}{2}\right)+4\left(\frac{4}{9}\right)+2\left(\frac{2}{5}\right)+4\left(\frac{4}{11}\right)+\left(\frac{1}{3}\right)\right]$
$\mathrm{C} \quad \int_{1}^{3} \frac{1}{x} d x \approx \frac{1}{8}\left[1+\left(\frac{4}{5}\right)+\left(\frac{2}{3}\right)+\left(\frac{4}{7}\right)+\left(\frac{1}{2}\right)+\left(\frac{4}{9}\right)+\left(\frac{2}{5}\right)+\left(\frac{4}{11}\right)+\left(\frac{1}{3}\right)\right]$
(b) Recall that the error E_{T} in the trapezoidal rule for approximating $\int_{a}^{b} f(x) d x$ satisfies

$$
\left|\int_{a}^{b} f(x) d x-T_{n}\right|=\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}
$$

whenever $\left|f^{\prime \prime}(x)\right| \leq K$ for all $a \leq x \leq b$.
Use the above error bound to determine a value of n for which the trapezoidal approximation to $\ln 3=$ $\int_{1}^{3} \frac{1}{x} d x$ has an error

$$
\left|E_{T}\right| \leq \frac{1}{3} 10^{-4}
$$

Solution: A. is the correct answer in Part (a).
For part (b)

$$
f(x)=\frac{1}{x}, \quad f^{\prime}(x)=\frac{-1}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{2}{x^{3}}
$$

Since $\left|f^{\prime \prime}(x)\right|=\frac{2}{x^{3}}$ is decreasing on the interval $1 \leq x \leq 2$, we have
$\left|f^{\prime \prime}(x)\right| \leq f^{\prime \prime}(1)=2$ for $1 \leq x \leq 2$. Hence, we can use $K=2$ in the error bound above.
For the trapezoidal approximation T_{n}, we have

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}=\frac{2(3-1)^{3}}{12 n^{2}}=\frac{16}{12 n^{2}}=\frac{4}{3 n^{2}}
$$

If we find a value of n for which $\frac{1}{3} 10^{-4} \geq \frac{4}{3 n^{2}}$, then we will have $\left|E_{T}\right| \leq \frac{1}{3} 10^{-4}$.

$$
\frac{1}{3} 10^{-4} \geq \frac{4}{3 n^{2}} \quad \rightarrow \quad n^{2} \geq 4 \cdot 10^{4} \quad \rightarrow \quad n \geq 2 \cdot 10^{2}=200
$$

$4 \int 2$ Suppose the Midpoint rule is to be used to approximate the integral

$$
\int_{0}^{10} \sin (\sqrt{6} x) d x
$$

What is the minimum number of points required to guarantee an accuracy of $1 / 1000$?
500

550

600
650
450

Solution: 500
$5 R$ Use the Trapezoidal rule with step size $\Delta x=1$ to appoximate the integral $\int_{0}^{4} f(x) d x$ where a table of values for the function $f(x)$ is given below.

x	0	1	2	3	4
$f(x)$	2	1	2	3	5

Solution: Using the formula for the trapezoidal rule with $\Delta x=1$ we see that

$$
\begin{aligned}
\int_{0}^{4} f(x) d x & \approx \frac{\Delta x}{2}(f(0)+2 f(1)+2 f(2)+2 f(3)+f(4))=\frac{1}{2}(2+2+4+6+5) \\
& =\frac{19}{2}=9.5
\end{aligned}
$$

$6 \boldsymbol{R}$ Consider the integral

$$
\int_{0}^{2}(2 x+3) d x
$$

(a) (5 pts.) Evaluate this integral exactly.
(b) (8 pts .) Using the Trapezoidal Rule with $n=4$ find an approximation to the integral.
(c) (2 pts.) Explain your answer in part (b).Hint:Consider the error.

Solution:

1. (a) $\int_{0}^{2}(2 x+3) d x=x^{2}+\left.3 x\right|_{0} ^{2}=\left(2^{2}+3 \cdot 2\right)-\left(0^{2}+3 \cdot 0\right)=10$.
2. (b)

$$
\begin{array}{cc}
T_{4}= & \frac{h}{2}[f(0)+2 f(1 / 2)+2 f(1)+2 f(3 / 2)+f(2)] \\
= & \frac{1 / 2}{2}[3+2(4)+2(5)+2(6)+7]=\frac{40}{4}=10 .
\end{array}
$$

3. (c) The error bound for the Trapezoidal Rule involves the second derivative of the integrand, $f(x)$. Notice that for this problem $f^{\prime \prime}(x)=0$ so that we may take $K=0$ and

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}=0
$$

The error is guaranteed to be zero.
$7 \boldsymbol{R}$ Suppose that $\left|f^{\prime \prime}(x)\right| \leq 1$ for $0 \leq x \leq 2$. If E_{M} is the error in the Midpoint Rule using n subintervals, then $\left|E_{M}\right|$ is less than

$$
\begin{aligned}
& \frac{1}{3 n^{2}} \\
& 0 \\
& \frac{1}{12 n^{2}} \\
& \frac{2}{3 n^{2}} \\
& \frac{1}{24 n^{2}}
\end{aligned}
$$

Solution:

$$
\frac{1}{3 n^{2}}
$$

$8 \boldsymbol{R}$ The integral $\int_{1}^{3} \frac{d x}{x}$ is estimated using the Trapezoidal Rule, using subintervals of size $\Delta x=1$. The approximation to $\ln 3$ obtained is

Solution:

We know that $\int_{1}^{3} \frac{d x}{x}=\ln 3-\ln 1=\ln 3$. Applying the Trapezoidal Rule with $\Delta x=1=$ $(b-a) / n=(3-1) / n=2 / n$, implies that $n=2$. We have $f(x)=\frac{1}{x}$ and $T_{n}=\frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+\right.$ $\left.2 f\left(x_{3}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$. Thus

$$
\int_{1}^{3} \frac{d x}{x}=\ln 3 \approx T_{2}=\frac{\Delta x}{2}[f(1)+2 f(2)+f(3)]=\frac{1}{2}\left[1+2\left(\frac{1}{2}\right)+\frac{1}{3}\right]=\frac{7}{6} .
$$

