Lecture 2 : The Natural Logarithm.

Recall

xn-{-l
"dr = C —1.
/:B x I + n #

What happens if n = —17

Definition We can define a function which is an anti-derivative for z=! using the Fundamental
Theorem of Calculus: We let

“1
lnx:/ —dt, x>0.
1t

This function is called the natural logarithm.
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Note that In(x) is the area under the continuous curve y = % between 1 and z if > 1 and minus the
area under the continuous curve y = % between 1 and z if x < 1.

We have In(2) is the area of the region shown in the picture on the left above and In(1/2) is minus the
area of the region shown in the picture on the right above.

I do not have a formula for In(x) in terms of functions studied before, however I could estimate the
value of In(2) using a Riemann sum. The approximating rectangles for a left Riemann sum with 10
approximating rectangles is shown below. Their area adds to 0.718771 ( to 6 decimal places). If we
took the limit of such sums as the number of approximating rectangles tends to infinity, we would get
the actual value of In(2), which is 0.693147 ( to 6 decimal places). The natural logarithm function is a
vuilt in function on most scientific calculators.
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With very little work, using a right Riemann sum with 1 approximating rectangle, we can get a lower

2
1
bound for In(2). The picture below demonstrates that |In2 = / ;dt >1/2|.
1
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Properties of the Natural Logarithm:

We can use our tools from Calculus I to derive a lot of information about the natural logarithm.

1.
2.

Domain = (0, 00) (by definition)

Range = (—o0, 00) (see later)

Inz>0ifz>1, lnx=0ifx=1Inz<0if x <1.

This follows from our comments above after the definition about how In(z) relates to the area
under the curve y = 1/x between 1 and x.

d(Inz)
dx

1
This follows from the definition and the Fundamental Theorem of Calculus.

The graph of y = Inz is increasing, continuous and concave down on the interval (0, c0).

Let f(z) = In(x), f’(x) = 1/x which is always positive for £ > 0 (the domain of f), Therefore the
graph of f(z) is increasing on its domain. We have f”(x) = =3 which is always negative, showing

that the graph of f(x) is concave down. The function f is continuous since it is differentiable.

The function f(x) = Inz is a one-to-one function.

Since f'(x) = 1/ which is positive on the domain of f, we can conclude that f is a one-to-one
function.

Since f(x) = Inx is a one-to-one function, there is a unique number, e, with the property that

Ine =1.

We have In(1) = 0 since fll 1/t dt = 0. Using a Riemann sum with 3 approximating rectangles,
we see that In(4) > 1/1 +1/2 4+ 1/3 > 1. Therefore by the intermediate value theorem, since
f(x) = In(x) is continuous, there must be some number e with 1 < e < 4 for which In(e) = 1.
This number is unique since the function f(x) = In(z) is one-to-one.
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We will be able to estimate the value of e in the next section with a limit. e ~ 2.7182818284590.

The following properties are very useful when calculating with the natural logarithm:
(7) In1=0

(17) In(ab) =Ina+Inb

(éit) In(§) =Ina —Inbd

(iv) Ina"=rlna

where a and b are positive numbers and r is a rational number.

Proof (ii) We show that In(azx) = Ina + Inx for a constant ¢ > 0 and any value of x > 0. The rule
follows with z = b. Let f(z) = Inz, z > 0 and g(z) = In(az), > 0. We have f'(z) = 1 and
g(@)= 5 a=.

Since both functions have equal derivatives, f(z) + C = g(z) for some constant C. Substituting
x =1 in this equation, we get In1 + C' = Ina, giving us C =Ina and Inaz =Ina + Inx.

(ili) Note that 0 =Inl1=In%=Ina-% =Ina+In2, giving us that In1 = —Ina.
Thus we get In ¢ = lna+ln% =Ina—Inb.
(iv) Comparing derivatives, we see that

dInz") rz"' r d(rlnz)

dx " T dx

Hence Inz" = rlnx 4 C for any = > 0 and any rational number r. Letting x = 1 we get C' = 0 and the
result holds.

Example FExpand

using the rules of logarithms.

Example Express as a single logarithm:

1
Inz+3ln(xr+1) — §ln(:c +1).
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Example Evaluate [ 1dt

We can use the rules of logarithms given above to derive the following information about limits.

lim Inz =00, limlnz = —o0.

r—00 rz—0

Proof We saw above that In2 > 1/2. If x > 2", then Inz > In2" (Why 7). So lnz > nln2 > n/2.
Hence as ¢ — oo, the values of Inx also approach oo.
Also In 2% = —nln2 < —n/2. Thus as = approaches 0 the values of Inz approach —co.

Note that we can now draw a reasonable sketch of the graph of y = In(z), using all of the information
derived above.

-1

Example Find the limit lim, . In(45).

We can extend the applications of the natural logarithm function by composing it with the absolute
value function. We have :
Inx x>0
In|z| =

In(—z) =<0

This is an even function with graph




We have In|z| is also an antiderivative of 1/x with a larger domain than in(z).

d 1 1
%(ln|x|) == and /de =Inlz|+C

We can use the chain rule and integration by substitution to get

(i g(a))) = L)

AC) R
and /g(m)dx_l lg(z)| +C

Example Differentiate In [v/x — 1.

Example Find the integral

Logarithmic Differentiation
To differentiate y = f(z), it is often easier to use logarithmic differentiation :

1. Take the natural logarithm of both sides to get Iny = In(f(x)).

: : : d d
2. Differentiate with respect to z to get iﬁ = ~In(f(z))

3. We got % =y In(f(x)) = f(2)& In(f(x)).

Example Find the derivative of y = 4/ %



Extra Examples

Please try to work through these questions before looking at the solutions.
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Example Expand In(“¥3

Example Differentiate In [v/x — 1.

Example Find d/dx In(] cos z|).

Example Find the integral

/ cot xdx

Example Find the integral

<1
/ dz.
. Tz

sin? z tan? z

Example Find the derivative of y = w2=1)2

Old Exam Question Differentiate the function

B (1.2 - 1)4
flo) = 22 +1



Solutions

Example Expand ln(eQ\/bffﬁ)

ln((gz#) =In(e’Va? + 1) — In(b*) = In(e?) + In(vVa2 + 1) — 3Inb

1 1
=2lne+ §ln(a2 +1)—3lnb=2+ 5111((12 +1) —3Inb.
Example Differentiate In |v/x — 1].

We use the chain rule here

d 1 1 1
L e =1 = -1
A s B L 3z — 1)
Example Find d/dz In(]| cos z|).
Again, we use the chain rule
d 1
%ln|cosx| Dl (—sinx) = —tanx.

Example Find the integral

/ cot xdx
CcOoS T
/cotxdx :/ ——dx.
sin x

We use substitution. Let v = sinz, du = cos xdzx.

/Cosmdx:/@:ln|u|+C:1n|sinx|+C’.
u

sin x

Example Find the integral

2
<1
/ dz.
. Tz

We use substitution. Let u = Inz, du = 1dz. u(e) =Ine =1, u(e?) =Ine? = 2.

2
e 1 2d 2
/ d$:/ —u:1n|u|) =In2—-Inl=1In2.
. rlnz Lou 1




sin? z tan? z

Example Find the derivative of y = DT

We use Logarithmic differentiation. If y = Sﬂgf;%?)f”f, then

Iny = In(sin® z) + In(tan* z) — In((2* — 1)) = 2In(sinz) + 4In(tan x) — 2In(2* — 1).
Differentiating both sides with respect to z, we get

ldy 2cosx N 4sec’r  2(2z)
ydr  sinz tanz a2 -1

Multiplying both sides by 3 and converting to a function of z, we get

dy [2(:083: 4sec? x 4x }_(siantan‘lx) [200895 4sec? x 4x

sinx tanx 2?2 -1 (22 —1)2 sin x tanz 22— 11

dz

Old Exam Question Differentiate the function

fla) =

We use Logarithmic differentiation. If y = (31_71)4 then

1
Iny =4In(z* — 1) — §ln(x2 +1).

Differentiating both sides with respect to z, we get

ldy — 4(2x) 2o
ydr 22—1 2(z2+1)

Multiplying both sides by 3 and converting to a function of z, we get

dy [ 8x x )}_((x2—1)>[ 8x x

d:ciyaﬁ—l_(xz—i—l 2r1/l2—1 (@22+1))



