Calculus with Parametric equations

Let C be a parametric curve described by the parametric equations
x = f(t),y = g(t). If the function f and g are differentiable and y is also a

dx

differentiable function of x, the three derivatives & dx, dt Y and % are related by

the Chain rule:
dy _ dydx

dt — dx dt
using this we can obtain the formula to compute » from % and %:

dy % . dx

dt
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Calculus with Parametric equations

Let C be a parametric curve described by the parametric equations

x = f(t),y = g(t). If the function f and g are differentiable and y is also a
differentiable function of x, the three derivatives & dx, Zyt and % are related by
the Chain rule:

Q dy dx
dt — dx dt
using this we can obtain the formula to compute » from % and %:
dy ¥ dx
- == f — #0
d e Gt 7

» The value of % gives gives the slope of a tangent to the curve at any
given point. This sometimes helps us to draw the graph of the curve.
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Calculus with Parametric equations

Let C be a parametric curve described by the parametric equations
x = f(t),y = g(t). If the function f and g are differentiable and y is also a
differentiable function of x, the three derivatives 2, 2 and % are related by

& @ dt
the Chain rule:
dy _ dydx

dt — dx dt
dx

using this we can obtain the formula to compute . from % and %:

dy % . dx

dt

» The value of ~ gives gives the slope of a tangent to the curve at any
given point. Th|s sometimes helps us to draw the graph of the curve.
» The curve has a horizontal tangent when % =0, and has a vertical

dy _
tangent when ¥ = co.
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Calculus with Parametric equations

Let C be a parametric curve described by the parametric equations

x = f(t),y = g(t). If the function f and g are differentiable and y is also a
differentiable function of x, the three derivatives & dx, Zyt and % are related by
the Chain rule:

Q dy dx
dt — dx dt
using this we can obtain the formula to compute » from % and dy'
dy & dx
— = <L f — #0
d e Gt 7

» The value of % gives gives the slope of a tangent to the curve at any
given point. This sometimes helps us to draw the graph of the curve.

» The curve has a horizontal tangent when % =0, and has a vertical

tangent when i = 0.
» The second derivative % can also be obtained from % and %. Indeed,
d
Py _ddyy GG o
dx?  dxdx % dt
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Example 1

Example 1 (a) Find an equation of the tangent to the curve
x=1t>—2t y=1t>—3t when t=-2
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Example 1

Example 1 (a) Find an equation of the tangent to the curve
x=t>—2t y=1t3—3t when t=-2
» When t = —2, the corresponding point on the curve is
P=(4+4,-8+6)=(8,-2).
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Example 1

Example 1 (a) Find an equation of the tangent to the curve
x=t>—2t y=1t3—3t when t=-2
» When t = —2, the corresponding point on the curve is
P=(4+4,-8+6)=(8,-2).

> We have & =2t —2and & =3¢* — 3.
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Example 1

Example 1 (a) Find an equation of the tangent to the curve
x=t>—2t y=1t3—3t when t=-2
» When t = —2, the corresponding point on the curve is
P=(4+4,-8+6)=(8,-2).

> We have & =2t —2and & =3¢* — 3.

2
> Therefore % = Zﬁ?jﬁ =33 when 2t —2 #0.

Annette Pilkington Lecture 35: Calculus with Parametric equations



Example 1

Example 1 (a) Find an equation of the tangent to the curve
x=t>—2t y=1t3—3t when t=-2
» When t = —2, the corresponding point on the curve is
P=(4+4,-8+6)=(8,-2).

> We have & =2t —2and & =3¢* — 3.

2
> Therefore % = Zﬁ?jﬁ =33 when 2t —2 #0.

_ 5 dy 1223 _ 9 _ 3
» Whent=-2, & =75 =% =—3.
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Example 1

Example 1 (a) Find an equation of the tangent to the curve
x=t>—2t y=1t3—3t when t=-2
» When t = —2, the corresponding point on the curve is
P=(4+4,-8+6)=(8,-2).

> We have & =2t —2and & =3¢* — 3.
> Therefore % = Zﬁ?jﬁ = 3;::23 when 2t — 2 #£ 0.
_ dy _ 12-3 _ 9 _ _3
> When t = -2, & = == = % = —3.
> The equation of the tangent line at the point P is (y +2) = —32(x — 8).
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Example 1

Example 1 (a) Find an equation of the tangent to the curve
x=t>—2t y=1t3—3t when t=-2
» When t = —2, the corresponding point on the curve is
P=(4+4,-8+6)=(8,-2).

> We have & =2t —2and & =3¢* — 3.
d dy/dt _ 3:2—3
> Therefore & = difdt = 3= when 2t —2 #0.
_ dy _ 123 _ 9 _ _3
» Whent=-2, & =75 =% =—3.
>

The equation of the tangent line at the point P is (y +2) = —3(x — 8).

y
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Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is
horizontal x = t? — 2t y=1t>—3t
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Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is
horizontal x = t? — 2t y=1t>—3t

3t2—3

dy _
> From above, we have that 3 = 5=
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Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is
horizontal x = t? — 2t y=1t>—3t

> From above, we have that & = 3;::23.
> & _0if =3 —0if 3t —3=0 (and 2t —2 £ 0).
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Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is
horizontal x = t? — 2t y=1t>—3t

> From above, we have that & = 3;::23.
> & _0if =3 —0if 3t —3=0 (and 2t —2 £ 0).

> Now 3t2—3=0if t = +1.
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Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is
horizontal x = t? — 2t y=1t>—3t

27
> From above, we have that & = 3£=3.
Ix 2t—2

> %:0|f3t273:0If3t2—3:0(and2t_27é0)

2t—2
» Now 3t> —3 =0 if t = £1.
» When t = —1, 2t — 2 # 0 and therefore the graph has a horizontal
tangent. The corresponding point on the curve is Q = (3,2).
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Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is
horizontal x = t? — 2t y=1t>—3t

27
> From above, we have that & = 3£=3.
Ix 2t—2

> ¥ —0if =2 = 0if 3t —3=0 (and 2t — 2 # 0).

» Now 3t> -3 =0if t = £1.

» When t = —1, 2t — 2 # 0 and therefore the graph has a horizontal
tangent. The corresponding point on the curve is Q = (3,2).

» When t =1, we have % =2t — 2 =0 and there is not a well defined
tangent. If the curve describes the motion of a particle, this is a point
where the particle has stooped. In this case, we see that the corresponding

point on the curve is R = (—1,—2) and the curve has a cusp(sharp point).
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Example 1

Example 1 (b) Find the point on the parametric curve where the tangent is
horizontal x = t? — 2t y=1t>—3t

27
> From above, we have that & = 3£=3.
Ix 2t—2

> %:0|f3t273:0If3t2—3:0(and2t_27é0)

2t—2
» Now 3t> -3 =0if t = £1.
» When t = —1, 2t — 2 # 0 and therefore the graph has a horizontal
tangent. The corresponding point on the curve is Q = (3,2).
» When t =1, we have % =2t — 2 =0 and there is not a well defined
tangent. If the curve describes the motion of a particle, this is a point
where the particle has stooped. In this case, we see that the corresponding

point on the curve is R = (—1,—2) and the curve has a cusp(sharp point).
y
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x=t>—2t y=1t -3t

(d) Use the second derivative to determine where the graph is concave up and
concave down.
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x=t>—2t y=1t -3t

2
» From above, we have that % = 3=3
Ix 2t—2

(d) Use the second derivative to determine where the graph is concave up and
concave down.
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x=t>—2t y=1t -3t

2
From above, we have that % = 3=3
Ix 2t—2

v

» The curve has a vertical tangent if 2t —2 = 0 (and 3t* — 3 # 0).

(d) Use the second derivative to determine where the graph is concave up and
concave down.
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x=t>—2t y=1t -3t

dy _ 3t2-3
dx — 2t—2°

» From above, we have that

» The curve has a vertical tangent if 2t —2 = 0 (and 3t* — 3 # 0).
> dx/dt =2t —2 =0 if t = 1, however in this case dy/dt = 3t> =3 =0,
hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and
concave down.
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x=t>—2t y=1t -3t

2
» From above, we have that % = 3=3
Ix 2t—2

» The curve has a vertical tangent if 2t —2 = 0 (and 3t* — 3 # 0).

> dx/dt =2t —2 =0 if t = 1, however in this case dy/dt = 3t> =3 =0,
hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and
concave down.

dy d (dy
» Ly o(%) _ 4 if 240
dx2 T dx T % dt
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x=t>—2t y=1t -3t

dy _ 3t2-3
dx — 2t—2°

» From above, we have that

» The curve has a vertical tangent if 2t —2 = 0 (and 3t* — 3 # 0).

> dx/dt =2t —2 =0 if t = 1, however in this case dy/dt = 3t> =3 =0,
hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and
concave down.

a2

<

>

dy d d
_d#) _ s if & £0
2 dx ‘L’; dt

&

d dy _ 3t2-3 _ 3
> If & £0, we have & = 3= = 2(¢ +1).
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x=t>—2t y=1t -3t

3t2—3
2t—2 °

» The curve has a vertical tangent if 2t —2 = 0 (and 3t* — 3 # 0).

> dx/dt =2t —2 =0 if t = 1, however in this case dy/dt = 3t> =3 =0,
hence the curve does not have a vertical tangent.

» From above, we have that dy =

(d) Use the second derivative to determine where the graph is concave up and
concave down.

dy d (dy
2y _ %) 2@ o ow
> dx2 dx - %X if dt ¢0
dx dy __ 3¢2 73 _ 3
> If & #0, we have I = 3= S(t+1).
> Theref ?y _ S3@) 3
ererore ;2 = 2t—2 T 4(t—1)
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x=t>—2t y=1t -3t

» From above, we have that dy = 32tt *23.

» The curve has a vertical tangent if 2t —2 = 0 (and 3t* — 3 # 0).

> dx/dt =2t —2 =0 if t = 1, however in this case dy/dt = 3t> =3 =0,
hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and
concave down.

d?

<

>

d)
— d(%) — %ddx if &0
ax 't

2 dx

&

> If % £0, we have % = 33 — 3(t 1),

d (3
d?y _ #G@ED)) 3
> Therefore 5 = 42— = 4(t71)

>Weseethat >0|ft>1and S <0ift<l.
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Example 1

Example 1 (c) Does the parametric curve given below have a vertical tangent?
x=t>—2t y=1t -3t

» From above, we have that dy = 32tt *23.

» The curve has a vertical tangent if 2t —2 = 0 (and 3t* — 3 # 0).
> dx/dt =2t —2 =0 if t = 1, however in this case dy/dt = 3t> =3 =0,
hence the curve does not have a vertical tangent.

(d) Use the second derivative to determine where the graph is concave up and
concave down.

2y _ ) _ &3 i
> ZT{: (di):dt%%ix if %#0
> If % £0, we have % = 33 — 3(t 1),
2 G (3(t+1
> Therefore ZT{ = 7“(22:(;2 ) _ 4(ti1)
>Weseethat >0|ft>1and y<0ift<1.
» Therefore the graph is concave down if t <1 and concave up if t > 1.

(when t =1, the point on the curve is at the cusp).
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Example 2

Consider the curve C defined by the parametric equations

X = tcost y =tsint —na<t<m
Find the equations of both tangents to C at (0, %)
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Example 2

Consider the curve C defined by the parametric equations

X = tcost y =tsint —na<t<m
Find the equations of both tangents to C at (0, %)

> We first find the value(s) of t which correspond to this point. At this
point, tcost = 0, therefore, either t =0 or cost = Oand t = 7. When

t = 0, the corresponding point on the curve is (0,0) and when t = £7,
the corresponding point is (0, 3).

Annette Pilkington
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Example 2

Consider the curve C defined by the parametric equations

X = tcost y =tsint —na<t<m
Find the equations of both tangents to C at (0, %)
> We first find the value(s) of t which correspond to this point. At this
point, tcost = 0, therefore, either t =0 or cost = Oand t = 7. When

t = 0, the corresponding point on the curve is (0,0) and when t = £7,
the corresponding point is (0, 3).

» We have % =sint+ tcost and % = cost — tsint.
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Example 2

Consider the curve C defined by the parametric equations

X = tcost y =tsint —na<t<m
Find the equations of both tangents to C at (0, %)

> We first find the value(s) of t which correspond to this point. At this
point, tcost = 0, therefore, either t =0 or cost = Oand t = 7. When
t = 0, the corresponding point on the curve is (0,0) and when t = £7,
the corresponding point is (0, 3).

» We have % =sint+ tcost and % = cost — tsint.

dy __ dy/dt __ sint—tcost
> Therefore dx — dx/dt T cost+tsint”
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Example 2

Consider the curve C defined by the parametric equations

X = tcost y =tsint —na<t<m
Find the equations of both tangents to C at (0, %)

> We first find the value(s) of t which correspond to this point. At this
point, tcost = 0, therefore, either t =0 or cost = Oand t = 7. When
t = 0, the corresponding point on the curve is (0,0) and when t = £7,
the corresponding point is (0, 3).

» We have % =sint + tcost and % =cost — tsint.

dy/dt _ sint—
> Therefore & = @/dt _ sint—tcost

X dx/dt ~ cost+tsint”
_x d _ 1-0 _ -2
> When t = 3, % =22 = =
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Example 2

Consider the curve C defined by the parametric equations

X = tcost y =tsint —na<t<m
Find the equations of both tangents to C at (0, %)

> We first find the value(s) of t which correspond to this point. At this
point, tcost = 0, therefore, either t =0 or cost = Oand t = 7. When
t = 0, the corresponding point on the curve is (0,0) and when t = £7,
the corresponding point is (0, 3).

cost — tsint.

» We have % =sint+ tcost and %

dy __ dy/dt __ sint—tcost
> Therefore x — dx/dt T cost+tsint”

—r d _ 1-0 _ =2
> Whent =5, ¢ = g% ==

_—r dy_ _ —1-0  _ 2
> Whent = =%, & =55 = =

3
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Example 2

Consider the curve C defined by the parametric equations

X = tcost y =tsint —na<t<m
Find the equations of both tangents to C at (0, %)

> We first find the value(s) of t which correspond to this point. At this
point, tcost = 0, therefore, either t =0 or cost = Oand t = 7. When
t = 0, the corresponding point on the curve is (0,0) and when t = £7,
the corresponding point is (0, 3).

» We have % =sint+ tcost and % = cost — tsint.

dy __ dy/dt __ sint—tcost
> Therefore dx — dx/dt T cost+tsint”

_ dy _ 1-0 __ =2
» When t = 2 T 0 F = n

_ -7 dy __ —1-0 _ 2
» When t = 2 i (D) (=D

. . ) _ 2
» The equations of the tangents are given byy—%=""xandy— 7 ==x.

ZONNY
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Area under a curve

Recall that the area under the curve y = F(x) where a < x < b and F(x) >0

is given by
b
/ F(x)dx

If this curve (of form y = F(x), F(x) >0, a < x < b) can be traced out
once by parametric equations x = f(t) and y = g(t), o < t < 3 then we can
calculate the area under the curve by computing the integral:

’/jg(t)f’(t)dt‘ :/jg(t)f'(t)dt or /:g(t)f’(t)dt
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Area under a curve

Example Find the area under the curve

x =2cost y =3sint 0<t<L
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Area under a curve

Example Find the area under the curve

x =2cost y =3sint 0<t<L

> The graph of this curve is a quarter ellipse, starting at (2,0) and moving
counterclockwise to the point (0, 3).
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Area under a curve

Example Find the area under the curve

x =2cost y =3sint 0<t<L

> The graph of this curve is a quarter ellipse, starting at (2,0) and moving
counterclockwise to the point (0, 3).

» From the formula, we get that the area under the curve is
[2g(t)f'(t)dt|.
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Area under a curve

Example Find the area under the curve

x =2cost y =3sint 0<t<L

> The graph of this curve is a quarter ellipse, starting at (2,0) and moving
counterclockwise to the point (0, 3).

» From the formula, we get that the area under the curve is
I g(0)f ().

> [Zg(t)f (t)dt = 0”/2 3sin t(2(—sint))dt

=-6 fow/z sin® tdt = —63 fog(l — cos(2t))dt

=3[t — V)2 =3[z _snm 4 sn0] = 3T _ (] = 3T = 37
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Area under a curve

Example Find the area under the curve

x =2cost y =3sint ogtgg

> The graph of this curve is a quarter ellipse, starting at (2,0) and moving

counterclockwise to the point (0, 3).
» From the formula, we get that the area under the curve is

I g(0)f ().

> [P g(t)f'(t)dt = [/?3sin t(2(—sin t))dt

=-6 fow/z sin® tdt = —63 [,% (1 — cos(2t))dt

in(2 7 s in 7 in ™ —3r L

= =3[t - = = —3[3 - 5 -0+ %0 = 35 — 0] = 5 = —F.

» Therefore the area under the curve is 3.

2
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Arc Length: Length of a curve

If a curve C is given by parametric equations x = f(t), y = g(t), a <t < 3,
where the derivatives of f and g are continuous in the interval o < t < 3 and
C is traversed exactly once as t increases from « to (3, then we can compute
the length of the curve with the following integral:

L= V&) (&) o= [y + o) e
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Arc Length: Length of a curve

If a curve C is given by parametric equations x = f(t), y = g(t), a <t < 3,
where the derivatives of f and g are continuous in the interval o < t < 3 and
C is traversed exactly once as t increases from « to (3, then we can compute
the length of the curve with the following integral:

L= V&) (&) o= [y + o) e

> If the curve is of the form y = F(x), a < x < b, this formula can be
derived from our previous formula

L:/b\/lJr(%)zdx

using the reverse substitution, x = f(t), giving % = f'(t).
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Example

Example Find the arc length of the spiral defined by

x = e'cost y:etsint 0<t<2r
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Example

Example Find the arc length of the spiral defined by

x = e'cost y:etsint 0<t<2r

> x'(t) = e'cost —e'sint, y'(t)=e'sint+ e cost.

Annette Pilkington Lecture 35: Calculus with Parametric equations



Example

Example Find the arc length of the spiral defined by

x = e'cost y:etsint 0<t<2r

> x'(t) = e'cost —e'sint, y'(t)=e'sint+ e cost.

> L= [2"/e¥(cost —sint)? + e*(sint + cos t)2dt
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Example

Example Find the arc length of the spiral defined by

x = e'cost y:etsint 0<t<2r

> x'(t) = e'cost —e'sint, y'(t)=e'sint+ e cost.

> L= [2"/e¥(cost —sint)? + e*(sint + cos t)2dt

> = 027r ef\/cos?t — 2costsint +sin?t + sin® t + 2sin t cos t + cos? tdt
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Example

Example Find the arc length of the spiral defined by

x = e'cost y:etsint 0<t<2r

> x'(t) = e'cost —e'sint, y'(t)=e'sint+ e cost.

> L= [2"/e¥(cost —sint)? + e*(sint + cos t)2dt

> = [*"et\/cos2t — 2costsint +sin?t -+ sin?t + 2sin t cos t + cos? tdt
2w

> = 02” e'V2dt = 2et| = +/2(e* —1).
0
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Example

Example Find the arc length of the circle defined by
X = cos 2t y =sin2t 0<t<2r

Do you see any problems?
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Example

Example Find the arc length of the circle defined by
X = cos 2t y =sin2t 0<t<2r

Do you see any problems?

> If we apply the formula L = ff /(22 + (2)2dt, then, we get
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Example

Example Find the arc length of the circle defined by
X = cos 2t y =sin2t 0<t<2r

Do you see any problems?

> If we apply the formula L = ff /(22 + (2)2dt, then, we get

> L= foz" V/4sin® 2t + 4 cos? 2tdt
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Example

Example Find the arc length of the circle defined by
X = cos 2t y =sin2t 0<t<2r
Do you see any problems?

> If we apply the formula L = ff /(22 + (2)2dt, then, we get

> L= foz" V/4sin® 2t + 4 cos? 2tdt
> =2 7" /1dt =4
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Example

Example Find the arc length of the circle defined by

X = cos 2t y =sin2t 0<t<2r

Do you see any problems?

> If we apply the formula L = ff /(22 + (2)2dt, then, we get

> L= foz" V/4sin® 2t + 4 cos? 2tdt

> =2 7" /1dt =4
» The problem is that this parametric curve traces out the circle twice, so
we get twice the circumference of the circle as our answer.
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