General Logarithms and Exponentials

Last day, we looked at the inverse of the logarithm function, the exponential
function. we have the following formulas:

In(x)

a Ine* =x and "™ =x
In(ab) = Ina+Inb, In(E) =Ina—Inb = =
Ina* =xlna _ e~
e =¢"e, & =—, () =¢Y
ey
lim Inx =00, limlnx = —c0
X0 ’ 0 lim e =00, and lim e =
X— 00 X— — 00
d 1 d
In |X| = — X __ X
—e =e
dx dx
1 X X
;dx:ln\x|—|—C edx=¢e"+C
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General exponential functions

For a > 0 and x any real number, we define

s xIna

a =e , a>0.

The function a* is called the exponential function with base a.

Note that In(a*) = xIn a is true for all real numbers x and all a > 0. (We saw
this before for x a rational number).

Note: The above definition for a* does not apply if a < 0.
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Laws of Exponents

We can derive the following laws of exponents directly from the definition and
the corresponding laws for the exponential function e*:

2X+y — aXa«V ax—y = i (ax)y = aX‘V (ab)x = axbx

For example, we can prove the first rule in the following way:

Ty = e(x+y) Ina

— e><|n atylna

— exlnaeylna = 2.

vV v.v. v .Y

The other laws follow in a similar manner.
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Derivatives

We can also derive the following rules of differentiation using the definition of
the function a*, a > 0, the corresponding rules for the function e* and the
chain rule.
d X d xIna
—(a") = —(e
dx ) dx( )

d d
=3a"lna a(ag(x)) = &eg(x) na g'(x)ag(x) Ina

» Example: Find the derivative of 52

> Instead of memorizing the above formulas for differentiation, | can just
convert this to an exponential function of the form e"®) using the
definition of 5, where u = x® 4+ 2x and differentiate using the techniques
we learned in the previous lecture.

» We have, by definition, 52 — ol +29In5

3 3 3
> Therefore L5712 = 4 g(H2)In5 — (2954 (43 4 24)|n5
Ix dx dx

> = (In5)(3x2 + 2)el’ 25 — (In5)(3x2 + 2)5 +2,
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Graphs of General exponential functions

For a > 0 we can draw a picture of the graph of

X

y=a
using the techniques of graphing developed in Calculus I.

» We get a different graph for each possible value of a.
We split the analysis into two cases,

> since the family of functions y = a* slope downwards when 0 < a < 1 and

» the family of functions y = a* slope upwards when a > 1.
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Case 1:Graphof y =3, 0<a< 1

S » Slope: If 0 < a < 1, the graph of
o y = a* has a negative slope and
— = is always decreasing,
d X\ __ X .
of | e (@) =a"lna<o. _In this case
a smaller value of a gives a
wf | — oy steeper curve [for x < 0].
» The graph is concave up since
20+ . . .
th2e second derivative is
d X\ __ X 2
of “=(a*)=a"(lna)” > 0.
» As x — 00, xIn a approaches
) =2 2 ] —00, since Ina < 0 and therefore
= exlna N
> vy-intercept: The y-intercept is > As x — —o0, xIna approaches
given by 00, since both x and In a are less
_ 0 _ 0lha _ 0 _ than 0. Therefore
y=a =e =e =1 e Y na
a=e — 0.
> x-intercept: The values of
e " X _ " X _
a* = e*? are always positive For0<a<t Jmg e =0 Im s =}

and there is no x intercept.
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Case 2: Graphof y =3%, a>1

> If a > 1, the graph of y = a* has
a positive slope and is always

120+ . .

increasing, 2 (a*) = a*Ina > 0.

1or » The graph is concave up since

s sl the second derivative is

;Ti(ax) = a*(Ina)® > 0.

6ol
» In this case a larger value of a
“r gives a steeper curve [when
ol x> 0].
‘ : . . » As x — 00, xIn a approaches oo,
- = 2 ¢ since Ina > 0 and therefore
> y-intercept: The y-intercept is a*=e""? — oo
given by > As x — —o0, xIna approaches
y=ad = el — 0 — 1. —00, smcex<0‘T\nd Ina > 0.
Therefore a* = &*"? — 0.
> x-intercept: The values of
a* = e*? are always positive Fora>1, Mg o =oo,  lim a"=0}

and there is no x intercept.
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Power Rules

We now have 4 different types of functions involving bases and powers. So far
we have dealt with the first three types:

If 2 and b are constants and g(x) > 0 and f(x) and g(x) are both
differentiable functions.

d

d b b—1 g1 d g0 _ g(x)
an 0, dX(f(x)) = b(f(x))” "f'(x), a =g (x)a®"" In a,

dx

d elx
S (F))

For 2 (f(x))¢™), we use logarithmic differentiation or write the function as
(F(x))EX) = 8P I(F) and use the chain rule.

> Also to calculate limits of functions of this type it may help write the
function as (f(x))g(X) — e8(IM(F(x)
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Example

Example Differentiate x>, x> 0.
> We use logarithmic differentiation on y = X<
» Applying the natural logarithm to both sides, we get
In(y) = 2x%In(x)

» Differentiating both sides, we get
1dy 2x?
—— = (Inx)4 _—.
) dx (Inx)4x + -

» Therefore % =y [4x Inx + 2x] = x2x2 [4x Inx + 2x] .
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Example

Example What is
lim x~*
X—00

X —x In(x)

> limy oo X X =limy_o €

> As x — 00, we have x — oo and In(x) — oo, therefore if we let

u = —xIn(x), we have that u approaches —oco as x — oo.
> Therefore
lim e "™ = |im e"=0
X— 00 u— —00
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General Logarithmic Functions

Since f(x) = a* is a monotonic function whenever a # 1, it has an inverse
which we denote by
f(x) = log, x.

» We get the following from the properties of inverse functions:

>
fl(x)=y ifandonlyif f(y)=x

\Ioga(X)zy if and only if ayzx‘

f(fﬁl(x)):x fﬁl(f(x)):x

log,(x) _

‘ a x  log,(a¥) = x. ‘
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Change of base Formula

It is not difficult to show that log, x has similar properties to In x = log, x.
This follows from the Change of Base Formula which shows that The
function log, x is a constant multiple of In x.

| Inx
og, X = ——
a Ina

Let y = log, x.
Since a” is the inverse of log, x, we have &’ = x.

Taking the natural logarithm of both sides, we get yIna = Inx,

which gives, y = Inx

Ina”
The algebraic properties of the natural logarithm thus extend to general
logarithms, by the change of base formula.

vV vyVvyVvyywy

log,1=0, log,(xy) = log,(x) + log,(y),  log,(x") = rlog,(x).
for any positive number a # 1. In fact for most calculations (especially
limits, derivatives and integrals) it is advisable to convert log, x to natural
logarithms. The most commonly used logarithm functions are log;; x and
Inx = log, x.
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Using Change of base Formula for derivatives

Change of base formula

| Inx
og. X = ——
a Ina

From the above change of base formula for log, x, we can easily derive the
following differentiation formulas:

d Inx 1 d g'(x)

T dxlna  xina a(logag(x)) - g(x)Ina’

d
£ (log, %)
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A special Limit

We derive the following limit formula by taking the derivative of f(x) = Inx at
x =1, We know that f’(1) = 1/1 = 1. We also know that

£(1) = lim In(1+x)—1In1l
x—0 X

= lim In(1 + x)"* = 1.
x—0

Applying the (continuous) exponential function to the limit on the left hand
side (of the last equality), we get

limy_,0 In(14x 1/x . In(14x 1/x
emx—o In(1+x)7% s In(14x)

x—0

= lim (1 + XM

Applying the exponential function to the right hand sided(of the last equality),
we gat e* = e. Hence

e = lim(1+4 x)"*

x—0

Note If we substitute y = 1/x in the above limit we get

e= lim (1+}%)y and e = lim (1+%)n

y—o0 n— o0

where n is an integer (see graphs below). We look at large values of n below to
get an approximation of the value of e.
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A special Limit

n=10— (1+1)" = 250374246, n=100— (1+1)" =270481383,

n=100— (1+1)" =271692393, n=1000— (1+1)" = 271814503,

points (n, (1 + 1/m)"), n = 1...100

2681 oo
266 .

264f

2601

258f
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