Lecture 23: Sequences

A **Sequence** is a list of numbers written in order.

$$\{a_1, a_2, a_3, \dots\}$$

The sequence may be infinite. The \underline{n} th term of the sequence is the n th number on the list. On the list above

$$a_1 = 1$$
st term, $a_2 = 2$ nd term, $a_3 = 3$ rd term, etc....

Example In the sequence $\{1, 2, 3, 4, 5, 6, \dots\}$, we have $a_1 = 1, a_2 = 2, \dots$ The n^{th} term is given by $a_n = n$.

Some sequences have **patterns**, some do not.

Example If I roll a 20 sided die repeatedly, I generate a sequence of numbers, which have no pattern.

Example The sequences

$$\{1, 2, 3, 4, 5, 6, \dots \}$$

and

$$\{1, -1, 1, -1, 1, \dots\}$$

have patterns.

Sometimes we can give a formula for the n th term of a sequence, $a_n = f(n)$.

Example For the sequence

$$\{1, 2, 3, 4, 5, 6, \dots\},\$$

we can give a formula for the n th term. $a_n = n$.

Example Assuming the following sequences follow the pattern shown, give a formula for the n-th term:

$$\{1, -1, 1, -1, 1, \dots\}$$

 $\{-1/2, 1/3, -1/4, 1/5, -1/6, \dots\}$

Factorials are commonly used in sequences

$$0! = 1, \quad 1! = 1, \quad 2! = 2 \cdot 1, \quad 3! = 3 \cdot 2 \cdot 1, \quad \dots, \quad n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 1.$$

Example Find a formula for the n th term in the following sequence

$$\left\{ \frac{2}{1}, \frac{4}{2}, \frac{8}{6}, \frac{16}{24}, \frac{32}{120}, \dots, a_n = \dots \right\}$$

Below we show 3 different ways to represent a sequence:

$$\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots\right\}$$
 $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$ $a_n = \frac{n}{n+1}.$

$$\left\{\frac{-3}{3}, \frac{5}{9}, \frac{-7}{27}, \dots, (-1)^n \frac{(2n+1)}{3^n}, \dots\right\} \qquad \left\{(-1)^n \frac{(2n+1)}{3^n}\right\}_{n=1}^{\infty} \qquad a_n = (-1)^n \frac{(2n+1)}{3^n}.$$

1

$$\left\{\frac{e}{1}, \frac{e^2}{2}, \frac{e^3}{6}, \dots, \frac{e^n}{n!}, \dots\right\} \qquad \left\{\frac{e^n}{n!}\right\}_{n=1}^{\infty} \qquad a_n = \frac{e^n}{n!}.$$

$$\left\{\frac{e^n}{n!}\right\}_{n=1}^{\infty}$$

$$a_n = \frac{e^n}{n!}.$$

Graph of a Sequence

A sequence is a function from the positive integers to the real numbers, with $f(n) = a_n$. We can draw a graph of this function as a set of points in the plane. The points on the graph are

$$(1, a_1), (2, a_2), (3, a_3), \ldots, (n, a_n), \ldots$$

Example Below, we show the graphs of the sequences $\left\{\frac{(-1)^n}{n}\right\}_{n=1}^{\infty}$ and $\left\{\frac{2n^3-1}{n^3}\right\}_{n=1}^{\infty}$.

We can see from these pictures that the graphs get closer to a horizontal asymptote as $n \to \infty$, y = 0for the sequence on the left and y=2 for the sequence on the right. Algebraically this means that as $n\to\infty$, we have $\frac{(-1)^n}{n}\to 0$ and $\frac{2n^3-1}{n^3}\to 2$.

Limit of a Sequence

A sequence $\{a_n\}$ has **limit** L if we can make the terms a_n as close as we like to L by taking n sufficiently large. We denote this by

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty.$$

If $\lim_{n\to\infty} a_n$ exists (is finite), we say the sequence **converges** or is convergent. Otherwise, we say the sequence diverges.

Graphically: If $\lim_{n\to\infty} a_n = L$, the graph of the sequence $\{a_n\}_{n=1}^{\infty}$ has a unique horizontal asymptote y = L.

Equivalent Definition A sequence $\{a_n\}$ has limit L and we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L \text{ as } n \to \infty$$

if for every $\epsilon > 0$ there is and integer N with the property that

if
$$n > N$$
 then $|a_n - L| < \epsilon$.

Determining if a sequence is convergent.

Using our previous knowledge of limits:

Theorem If $\lim_{x\to\infty} f(x) = L$ and $f(n) = a_n$, where n is an integer, then $\lim_{n\to\infty} a_n = L$.

Example Determine if the following sequences converge or diverge:

$$\left\{\frac{2^n-1}{2^n}\right\}_{n=1}^{\infty}, \qquad \left\{\frac{2n^3-1}{n^3}\right\}_{n=1}^{\infty}$$

We can use L'Hospital's rule to determine the limit of f(x) if we have an indeterminate form.

Example Is the following sequence convergent?

$$\left\{\frac{n}{2^n}\right\}_{n=1}^{\infty}$$

Diverging to ∞ . $\lim_{n\to\infty} a_n = \infty$ means that for every positive number M, there is an integer N with the property

if
$$n > N$$
, then $a_n > M$.

In this case we say the sequence $\{a_n\}$ diverges to infinity.

Note: If $\lim_{x\to\infty} f(x) = \infty$ and $f(n) = a_n$, where n is an integer, then $\lim_{n\to\infty} a_n = \infty$.

Example Show that the sequence $\{r^n\}_{n=1}^{\infty}$, $r \geq 0$, converges if $0 \leq r \leq 1$ and diverges to infinity if r > 1.

The usual Rules of Limits apply:

If $\{a_n\}$ and $\{b_n\}$ are convergent sequences and c is any constant then

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} (a_n - b_n) = \lim_{n \to \infty} a_n - \lim_{n \to \infty} b_n$$

$$\lim_{n \to \infty} c = c$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} a_n$$

$$\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n \right]^p \text{ if } p > 0 \text{ and } a_n > 0$$

In fact if $\lim_{n\to\infty} a_n = L$ and f(x) is a continuous function at L, then

$$\lim_{n \to \infty} f(a_n) = f(L).$$

Example Determine if the following sequence converges or diverges and if it converges find the limit.

$$\left\{\sqrt[3]{\frac{2n+1}{n}} - \frac{1}{n}\right\}_{n=1}^{\infty}.$$

Note We cannot always find a function f(x) with $f(n) = a_n$. The **Squeeze Theorem** or Sandwich Theorem can also be applied:

If
$$a_n \le b_n \le c_n$$
 for $n \ge n_0$ and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\lim_{n \to \infty} b_n = L$.

Example Find the limit of the following sequence

$$\left\{\frac{2^n}{n!}\right\}_{n=1}^{\infty},$$

Alternating Sequences

For any sequence, we have $-|a_n| \le a_n \le |a_n|$. We can use the squeeze theorem to see that

if
$$\lim_{n \to \infty} |a_n| = 0$$
, then $\lim_{n \to \infty} a_n = 0$.

In fact any sequence with infinitely many positive and negative values converges if and only if $\lim_{n\to\infty} |a_n| = 0$

Let
$$\{a_n\} = \{(-1)^n a'_n\}$$
 where $a'_n > 0$

- If $\lim_{n\to\infty} a'_n = L \neq 0$, then $\lim_{n\to\infty} (-1)^n a'_n$ does not exist.
- If $\lim_{n\to\infty} a'_n = \infty$, then $\lim_{n\to\infty} (-1)^n a'_n$ does not exist.
- If $\lim_{n\to\infty} a'_n$ does not exist, then $\lim_{n\to\infty} (-1)^n a'_n$ does not exist.

Below, we show a picture of a sequence where, as in the first case above, $\lim_{n\to\infty} a'_n = L \neq 0$.

Theorem If $\{a_n\}$ is an alternating sequence of the form $(-1)^n a'_n$ where $a'_n > 0$, then the alternating sequence converges if and only if $\lim_{n\to\infty} |a_n| = 0$ or (for the sequence described above) $\lim_{n\to\infty} a'_n \to 0$.

(also true for sequences of form $(-1)^{n+1}a'_n$ or any sequence with infinitely many positive and negative terms)

Example Determine if the following sequences converge:

$$\left\{ (-1)^n \frac{2n+1}{n^2} \right\}_{n=1}^{\infty}, \qquad \left\{ (-1)^n \frac{2n+1}{n} \right\}_{n=1}^{\infty}$$

Monotone Sequences

Definition A sequence $\{a_n\}$ is called **increasing** if $a_n < a_{n+1}$ for all $n \ge 1$, or

$$a_1 < a_2 < a_3 < \dots$$

A sequence $\{a_n\}$ is called **decreasing** if $a_n > a_{n+1}$ for all $n \ge 1$, or

$$a_1 > a_2 > a_3 > \dots$$

A sequence $\{a_n\}$ is called **monotonic** if it is either increasing or decreasing.

Definition A sequence $\{a_n\}$ is **bounded above** if there is a number M for which

$$a_n \le M$$
 for all $n \ge 1$.

A sequence $\{a_n\}$ is **bounded below** if there is a number m for which

$$a_n \ge m$$
 for all $n \ge 1$.

A sequence that is bounded above and below is called **Bounded**.

Theorem Every bounded monotonic sequence is convergent.

(This theorem will be very useful later in determining if series are convergent.)

To check for monotonicity

If we have a differentiable function f(x) with $f(n) = a_n$, then the sequence $\{a_n\}$ is increasing if f'(x) > o and the sequence $\{a_n\}$ is decreasing if f'(x) < o.

Example Show that the following sequence is monotone and bounded and hence converges.

$$\{\tan^{-1}(n)\}_{n=1}^{\infty}$$