
Sequences

A Sequence is a list of numbers written in order.

{a1, a2, a3, . . . }

The sequence may be infinite. The n th term of the sequence is the n th
number on the list. On the list above

a1 = 1st term, a2 = 2 nd term, a3 = 3 rd term, etc....

I Example In the sequence {1, 2, 3, 4, 5, 6, . . . }, we have

a1 = 1, a2 = 2, . . . . The nth term is given by an = n.

Some sequences have patterns, some do not.

I Example If I roll a 20 sided die repeatedly, I generate a sequence of
numbers, which have no pattern.

I Example The sequences

{1, 2, 3, 4, 5, 6, . . . }

and
{1, −1, 1, −1, 1, . . . }

have patterns.
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Formula for an

Sometimes we can give a formula for the n th term of a sequence, an = f (n).
Example For the sequence {1, 2, 3, 4, 5, 6, . . . }, we can give a formula for the n
th term. an = n.
Example Assuming the following sequences follow the pattern shown, give a
formula for the n-th term:

I {1, −1, 1, −1, 1, . . . }
I nth term = an = (−1)n+1.

I {−1/2, 1/3, −1/4, 1/5, −1/6, . . . }
I nth term = an = (−1)n

n+1
.

Factorials are commonly used in sequences

0! = 1, 1! = 1, 2! = 2·1, 3! = 3·2·1, . . . , n! = n·(n−1)·(n−2)·· · ··1.

Example Find a formula for the n th term in the following sequence(
2

1
,

4

2
,

8

6
,

16

24
,

32

120
, . . . , an = ,

)

I nth term = an = 2n

n!
.
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Different ways to represent a sequence

Below we show 3 different ways to represent the sequences given:

A.n 1

2
,

2

3
,

3

4
, . . . ,

n

n + 1
, . . .

o
,

n n

n + 1

o∞
n=1
, an =

n

n + 1
.

B. n−3

3
,

5

9
,
−7

27
, . . . , (−1)n (2n + 1)

3n
, . . .

o
,n

(−1)n (2n + 1)

3n

o∞
n=1
, an = (−1)n (2n + 1)

3n
.

C.ne

1
,

e2

2
,

e3

6
, . . . ,

en

n!
, . . .

o
,

nen

n!

o∞
n=1
, an =

en

n!
.
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Graph of a sequence

A sequence is a function from the positive integers to the real numbers, with
f (n) = an. We can draw a graph of this function as a set of points in the plane.
The points on the graph are (1, a1), (2, a2), (3, a3), . . . , (n, an), . . .

Example Graph the sequences { (−1)n

n
}∞n=1 and

n
2n3−1

n3

o∞
n=1

.

20 40 60 80 100

-0.10

-0.05

0.05

0.10

points Hn,
H-1Ln

n
L, n = 1...100

20 40 60 80 100

1.9996

1.9997

1.9998

1.9999

2.0000

points Hn,
2 n3

- 1

n3
L, n = 1...100

We can see from these pictures that the graphs get closer to a horizontal

asymptote as n→∞, y = 0 on the left and y = 2 on the right. Algebraically

this means that as n→∞, we have (−1)n

n
→ 0 and 2n3−1

n3 → 2.
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Limit of a sequence

Definition A sequence {an} has limit L if we can make the terms an as close
as we like to L by taking n sufficiently large. We denote this by

lim
n→∞

an = L or an → L as n→∞.

If limn→∞ an exists (is finite), we say the sequence converges or is convergent.
Otherwise, we say the sequence diverges.

Graphically: If limn→∞ an = L, the graph of the sequence {an}∞n=1 has a unique
horizontal asymptote y = L.

Equivalent Definition A sequence {an} has limit L and we write

lim
n→∞

an = L or an → L as n→∞

if for every ε > 0 there is and integer N with the property that

if n > N then |an − L| < ε.
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Determining if a sequence is convergent.

Using our previous knowledge of limits :

Theorem If limx→∞ f (x) = L and f (n) = an, where n is an integer, then
limn→∞ an = L.

Example Determine if the following sequences converge or diverge:

A.
n 2n − 1

2n

o∞
n=1
, B.

n 2n3 − 1

n3

o∞
n=1

I A. limx→∞
2x−1

2x = limx→∞
1−2−x

1
= 1.

I Therefore the sequence
n

2n−1
2n

o∞
n=1

converges and

limn→∞ an = limn→∞
2n−1

2n = 1.

I B. limx→∞
2x3−1

x3 = limx→∞
2−1/x3

1
= 2.

I Therefore the sequence
n

2n3−1
n3

o∞
n=1

converges and

limn→∞ an = limn→∞
2n3−1

n3 = 2.
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L’Hospital’s rule

We can use L’Hospital’s rule to determine the limit of f (x) if we have an
indeterminate form.

Example Is the following sequence convergent?n n

2n

o∞
n=1

I limx→∞
x
2x = (by l’Hospital) limx→∞

1
2x ln 2

= 0.

I Therefore the sequence converges and imn→∞
n
2n = 0.

Diverging to ∞. limn→∞ an =∞ means that for every positive number M,
there is an integer N with the property

if n > N, then an > M.

In this case we say the sequence {an} diverges to infinity.

Note: If limx→∞ f (x) =∞ and f (n) = an, where n is an integer, then
limn→∞ an =∞.
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Important sequence/limit

Example Show that the sequence {rn}∞n=1, r ≥ 0, converges if 0 ≤ r ≤ 1 and
diverges to infinity if r > 1.

I limn→∞ rn = limx→∞ r x = limx→∞ ex ln r .

I limx→∞ ex ln r =

8<:
0 if r < 1
1 if r = 1
∞ if r > 1

I Therefore the sequence {rn}∞n=1, r ≥ 0, converges if 0 ≤ r ≤ 1 and
diverges to infinity if r > 1.
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Rules of Limits

The usual Rules of Limits apply:

If {an} and {bn} are convergent sequences and c is any constant then

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn

lim
n→∞

c = c

lim
n→∞

can = c lim
n→∞

an

lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn

lim
n→∞

an

bn
=

limn→∞ an

limn→∞ bn
if lim

n→∞
bn 6= 0

lim
n→∞

ap
n =

h
lim

n→∞
an

ip

if p > 0 and an > 0

In fact if limn→∞ an = L and f (x) is a continuous function at L, then

lim
n→∞

f (an) = f (L).
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Applying the Rules of Limits

Example Determine if the following sequence converges or diverges and if it
converges find the limit. n

3

r
2n + 1

n
− 1

n

o∞
n=1
.

I limn→∞( 3

q
2n+1

n
− 1

n
) = limn→∞

3

q
2n+1

n
− limn→∞

1
n

I = 3

q
limn→∞

2n+1
n
− limn→∞

1
n

I = 3

q
limx→∞

2x+1
x
− limx→∞

1
x

= 3

q
limx→∞

2+1/x
1
− 0

I = 3
√

2

I Therefore the sequence
n

3

q
2n+1

n
− 1

n

o∞
n=1

converges to 3
√

2.
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When there is no f(x) / Squeeze Theorem

Note We cannot always find a function f (x) with f (n) = an.
The Squeeze Theorem or Sandwich Theorem can also be applied :

If an ≤ bn ≤ cn for n ≥ n0 and lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

I Example Find the limit of the following sequence
n

2n

n!

o∞
n=1
,

I Requires a bit of cleverness, because we cannot replace n! by a
function x!.

I Certainly 2n

n!
> 0 for all n ≥ 1. So if we can find a sequence {cn} with

2n

n!
≤ cn for all n ≥ 1 and limn→∞ cn = 0, then we can apply the squeeze

theorem.

I Note that 2n

n!
= 2

1
· 2

2
· 2

3
· · · · · 2

n−1
· 2

n

I Since 2
k
≤ 1 if k ≥ 2, we have 2n

n!
≤ 2 · 2

n
for all n ≥ 2.

I Since limn→∞ 2 · 2
n

= 0, and 0 ≤ 2n

n!
≤ 2 · 2

n
for all n ≥ 2, we can conclude

that limn→∞
2n

n!
= 0 using the squeeze theorem.

I Therefore the sequence
n

2n

n!

o∞
n=1

converges to 0.
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Alternating Sequences

Theorem If {an} is an alternating sequence of the form (−1)na′n where
a′n > 0, then the alternating sequence converges if and only if limn→∞ |an| = 0

or (for the sequence described above) limn→∞ a′n → 0.

(also true for sequences of form (−1)n+1a′n or any sequence with infinitely many
positive and negative terms)

Example Determine if the following sequences converge:

A.
n

(−1)n 2n + 1

n2

o∞
n=1
, B.

n
(−1)n 2n + 1

n

o∞
n=1

I A. an = (−1)n 2n+1
n2 .

I limn→∞ |an| = limn→∞
2n+1
n2 = limx→∞

2x+1
x2 = limx→∞

(2/x)+(1/x2)
1

= 0

I Therefore the sequence
n

(−1)n 2n+1
n2

o∞
n=1

converges to 0.

I B. bn = (−1)n 2n+1
n

.

I limn→∞ |bn| = limn→∞
2n+1

n
= limx→∞

2x+1
x

= limx→∞
2+(1/x)

1
= 2 6= 0.

I Therefore the sequence
n

(−1)n 2n+1
n

o∞
n=1

diverges.
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Alternating Sequences

Geometrically, we can see the difference in the behavior of the sequences above
by examining their graphs. The convergent sequence has a unique horizontal
asymptote whereas the divergent sequence has two.

20 40 60 80 100

-0.2

-0.1

0.1

0.2

points Hn,
H-1Ln H2 n + 1L

n2
L, n = 1...100

20 40 60 80 100

-3

-2

-1

1

2

points Hn,
H-1Ln H2 n + 1L

n
L, n = 1...100
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Monotone Bounded Sequences

Definition A sequence {an} is called increasing if an < an+1 for all n ≥ 1, or

a1 < a2 < a3 < . . . .

A sequence {an} is called decreasing if an > an+1 for all n ≥ 1, or

a1 > a2 > a3 > . . . .

A sequence {an} is called monotonic if it is either increasing or decreasing.

Definition A sequence {an} is bounded above if there is a number M for
which

an ≤ M for all n ≥ 1.

A sequence {an} is bounded below if there is a number m for which

an ≥ m for all n ≥ 1.

A sequence that is bounded above and below is called Bounded.

Theorem Every bounded monotonic sequence is convergent.
(This theorem will be very useful later in determining if series are convergent.)
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Monotone Bounded Sequences, Example

To check for monotonicity
If we have a differentiable function f (x) with f (n) = an, then the sequence
{an} is increasing if f ′(x) > o and the sequence {an} is decreasing if f ′(x) < o.

Example Show that the following sequence is monotone and bounded and
hence converges.

{tan−1(n)}∞n=1

I We know that −π
2
< tan−1(n) < π

2
for all n > 0.

I We also know that tan−1(n) increases as n increases, since
d tan−1 x

dx
= 1

x2+1
> 0 for all x .

I Therefore, we can conclude that the sequence above converges.

I We could actually compute the limit here, but using the theorem for
bounded monotonic sequences, we have concluded that the sequence
converges without directly computing the limit.
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