Series

So far our definition of a sum of numbers applies only to adding a finite set of numbers. We can extend this to a definition of a sum of an infinite set of numbers in much the same way as we extended our notion of the definite integral to an improper integral over an infinite interval.

- Example

$$
\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots
$$

We call this infinite sum a series

- Definition Given a series $\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\ldots$, we let s_{n} denote its nth partial sum

$$
s_{n}=a_{1}+a_{2}+\cdots+a_{n} .
$$

- If the sequence $\left\{s_{n}\right\}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=S$, then we say that the series $\sum_{n=1}^{\infty} a_{n}$ is convergent and we let

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{n}=\lim _{n \rightarrow \infty} s_{n}=S
$$

The number S is called the sum of the series. Otherwise the series is called divergent.

Using $\lim _{n \rightarrow \infty} S_{n}$ to determine convergence/divergence

Example Find the partial sums $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ of the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$. Find the sum of this series. Does the series converge?

- We have $s_{1}=\frac{1}{2}, \quad s_{2}=\frac{1}{2}+\frac{1}{4}, \quad s_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8} \ldots$
- From the picture, we see that $s_{n}=1-\frac{1}{2^{n}}$.
- $\sum_{n=1}^{\infty} \frac{1}{2^{n}}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{2^{n}}\right)=1$.
- Therefore this series converges to $S=1$.
- which you could have figured out from the picture :)

Using $\lim _{n \rightarrow \infty} S_{n}$ to determine convergence/divergence

Example Recall that $1+2+3+\cdots+n=\frac{n(n+1)}{2}$. Does the series

$$
\sum_{n=1}^{\infty} n
$$

converge?

- We have the nth partial sum is $s_{n}=1+2+3+\cdots+n=\frac{n(n+1)}{2}$.
- $\sum_{n=1}^{\infty} n=\lim _{n \rightarrow \infty} s_{n}$ if it exists.
$-\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \frac{n(n+1)}{2}=\lim _{x \rightarrow \infty} \frac{x(x+1)}{2}$.
$\Rightarrow=\lim _{x \rightarrow \infty} \frac{x^{2}+x}{2}=\infty$.
- Therefore this series diverges. (It does not have a finite sum)

Geometric series

The geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots
$$

is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r} \quad|r|<1
$$

If $|r| \geq 1$, the geometric series is divergent.
Example Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} 10}{4^{n-1}}=-10+\frac{10}{4}-\frac{10}{16}+\ldots$

- We identify the values of a and r.
- $a=$ first term $=-10$ in this case.
- The second term is ar, so $r=$ term2/ term 1. Here $r=\frac{10}{4} /(-10)=\frac{-1}{4}$.
- Just to be sure that we are dealing with a geometric series, we check that the n th term is $a r^{n-1}: ~ a r^{n-1}=(-10) \frac{(-1)^{n-1}}{4^{n-1}}$, this is indeed the given n th term.
- Therefore, since $|r|<1, \sum_{n=1}^{\infty} \frac{(-1)^{n} 10}{4^{n-1}}=\frac{a}{1-r}=\frac{-10}{1-\frac{(-1)}{4}}=\frac{-10}{5 / 4}=-8$.

Geometric series, another example

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+\cdots
$$

is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r} \quad|r|<1
$$

If $|r| \geq 1$, the geometric series is divergent.
Example Find the sum of the series $\sum_{n=1}^{\infty} \frac{2}{3^{n}}=\frac{2}{3}+\frac{2}{9}+\frac{2}{27}+\ldots$

- We identify the values of a and r.
- $a=$ first term $=2 / 3$ in this case.
- The second term is ar, so $r=$ term2/ term 1. Here $r=\frac{2}{9} / \frac{2}{3}=\frac{1}{3}$.
- Just to be sure that we are dealing with a geometric series, we check that the n th term is $a r^{n-1}$: $a r^{n-1}=(2 / 3) \frac{1}{3^{n-1}}=\frac{2}{3^{n}}$, as required.
- Therefore, since $|r|<1, \sum_{n=1}^{\infty} \frac{2}{3^{n}}=\frac{a}{1-r}=\frac{2 / 3}{1-\frac{(1)}{3}}=\frac{2 / 3}{2 / 3}=1$.

geometric series not starting at $n=1$

Example Find the sum of the series

$$
\sum_{n=4}^{\infty} \frac{2^{n-1}}{3^{n}}
$$

- Note that this sequence starts at $n=4$, so the formula for the sum does not apply as it stands.
- We can use two approaches, use the formula and subtract the missing terms or expand the series and rewrite it.
- Approach 1 :
$\sum_{n=4}^{\infty} \frac{2^{n-1}}{3^{n}}=\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^{n}}-\left[\frac{1}{3}+\frac{2}{3^{2}}+\frac{2^{2}}{3^{3}}\right]=\frac{1 / 3}{1-2 / 3}-\left[\frac{3^{2}+6+2^{2}}{3^{3}}\right]=1-\frac{19}{27}=\frac{8}{27}$.
- Approach 2: rewrite the formula so that the sum starts at 1 .
- $\sum_{n=4}^{\infty} \frac{2^{n-1}}{3^{n}}=\frac{2^{3}}{3^{4}}+\frac{2^{4}}{3^{5}}+\frac{2^{5}}{3^{6}}+\cdots=a+a r+a r^{2}+\cdots=\sum_{n=1}^{\infty} a r^{n-1}$
- $a=$ term $1=\frac{2^{3}}{3^{4}}, \quad a r=$ term $2=\frac{2^{4}}{3^{5}}$. Therefore $r=\frac{2^{4}}{3^{5}} / \frac{2^{3}}{3^{4}}=\frac{2}{3}$.
- we check that $\frac{2^{3}}{3^{4}}+\frac{2^{4}}{3^{5}}+\frac{2^{5}}{3^{6}}+\cdots=\sum_{n=1}^{\infty} \operatorname{ar}^{n-1}$ (true).
- Since $|r|=\frac{2}{3}<1$, we see that $\frac{2^{3}}{3^{4}}+\frac{2^{4}}{3^{5}}+\frac{2^{5}}{3^{6}}+\cdots=\frac{2^{3}}{3^{4}} /\left(1-\frac{2}{3}\right)=\frac{2^{3}}{3^{3}}=\frac{8}{27}$.

Repeating Decimals

Example Write the number $0.66666666 \cdots=0 . \overline{6}$ as a fraction.

- $0.666666666 \cdots=\frac{6}{10}+\frac{6}{100}+\frac{6}{1000}+\ldots$
$-=\frac{6}{10}+\frac{6}{10^{2}}+\frac{6}{10^{3}}+\ldots$ (a geometric series).
- $a=\frac{6}{10}$ and $r=\frac{6}{10^{2}} / \frac{6}{10}=\frac{1}{10}$.
- we check $\frac{6}{10}+\frac{6}{10^{2}}+\frac{6}{10^{3}}+\cdots=a+a r+a r^{2}+\ldots$ (it is)
- Therefore $0.666666666 \cdots=\frac{6}{10}+\frac{6}{10^{2}}+\frac{6}{10^{3}}+\cdots=\frac{6 / 10}{1-1 / 10}=6 / 9=2 / 3$
- as suspected :)

Repeating Decimals

Example Write the number $1.521212121 \cdots=1.52 \overline{1}$ as a fraction.

- $1.521212121 \cdots=1.5+\frac{21}{10^{3}}+\frac{21}{10^{5}}+\frac{21}{10^{7}}+\ldots$
$-\frac{21}{10^{3}}+\frac{21}{10^{5}}+\frac{21}{10^{7}}+\ldots$ is a geometric series.
- $a=\frac{21}{10^{3}}$ and $r=\frac{21}{10^{5}} / \frac{21}{10^{3}}=\frac{1}{10^{2}}$.
- we double check $\frac{21}{10^{3}}+\frac{21}{10^{5}}+\frac{21}{10^{7}}+\cdots=a+a r+a r^{2}+\ldots$ (it is)
- Therefore
$1.521212121 \cdots=1.5+\frac{21}{10^{3}}+\frac{21}{10^{5}}+\frac{21}{10^{7}}+\cdots=1.5+\frac{21 / 10^{3}}{1-1 / 10^{2}}=3 / 2+21 / 990$
- $=3 / 2+7 / 330=1004 / 660=251 / 165$

Telescoping Series.

These are series of the form similar to $\sum f(n)-f(n+1)$. Because of the large amount of cancellation, they are relatively easy to sum.
Example Show that the series

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}+7 k+12}=\sum_{k=1}^{\infty} \frac{1}{(k+3)}-\frac{1}{(k+4)}
$$

converges.

- $S_{1}=\frac{1}{4}-\frac{1}{5}$
- $S_{2}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=\frac{1}{4}-\frac{1}{6}$.
- $S_{3}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}=\frac{1}{4}-\frac{1}{7}$.
- $S_{n}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{(n+3)}-\frac{1}{(n+4)}=\frac{1}{4}-\frac{1}{(n+4)}$.
$-\sum_{k=1}^{\infty} \frac{1}{(k+3)}-\frac{1}{(k+4)}=\lim _{n \rightarrow \infty} S_{n}=\lim _{n \rightarrow \infty}\left[\frac{1}{4}-\frac{1}{(n+4)}\right]=\frac{1}{4}$.
- Also check the extra example in your notes.

Harmonic Series.

The following series, known as the harmonic series, diverges:

$$
\sum_{k=1}^{\infty} \frac{1}{n} \text { diverges }
$$

- We can see this if we look at a subsequence of partial sums: $\left\{s_{2^{n}}\right\}$.
- $s_{1}=1, \quad s_{2}=1+\frac{1}{2}=\frac{3}{2}$,
- $s_{4}=1+\frac{1}{2}+\left[\frac{1}{3}+\frac{1}{4}\right]>1+\frac{1}{2}+\left[\frac{1}{4}+\frac{1}{4}\right]=2$,
$\Rightarrow s_{8}=1+\frac{1}{2}+\left[\frac{1}{3}+\frac{1}{4}\right]+\left[\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right]>s_{4}+\left[\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right]>2+\frac{1}{2}=\frac{5}{2}$.
- Similarly we get

$$
s_{2^{n}}>\frac{n+2}{2}
$$

and $\lim _{n \rightarrow \infty} s_{n}>\lim _{n \rightarrow \infty} \frac{n+2}{2}=\infty$. Hence the harmonic series diverges. (You will see an easier proof in the next section.)

Where sum starts.

Note that
convergence or divergence is unaffected by adding or deleting a finite number of terms at the beginning of the series.

Example

$$
\sum_{n=10}^{\infty} \frac{1}{n} \text { is divergent }
$$

and

$$
\sum_{k=50}^{\infty} \frac{1}{2^{k}} \quad \text { is convergent. }
$$

Divergence Test

Theorem If a series $\sum_{i=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
Warning The converse is not true, we may have a series where $\lim _{n \rightarrow \infty} a_{n}=0$ and the series in divergent. For example, the harmonic series.
Proof Suppose the series $\sum_{i=1}^{\infty} a_{n}$ is convergent with sum S. Since $a_{n}=s_{n}-s_{n-1}$ and

$$
\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} s_{n-1}=S
$$

we have $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}-\lim _{n \rightarrow \infty} s_{n-1}=S-S=0$.
This gives us a Test for Divergence:
If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{i=1}^{\infty} a_{n}$ is divergent.
If $\lim _{n \rightarrow \infty} a_{n}=0$ the test is inconclusive.

Divergence Test

If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then $\sum_{i=1}^{\infty} a_{n}$ is divergent. If $\lim _{n \rightarrow \infty} a_{n}=0$ the test is inconclusive.
Example Test the following series for divergence with the above test:

$$
\sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n^{2}} \quad \sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n^{3}} \quad \sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n}
$$

- To test $\sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n^{2}}$ for convergence, we check $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n^{2}}$.
- $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n^{2}}=\lim _{n \rightarrow \infty} \frac{1+1 / n^{2}}{2}=\frac{1}{2} \neq 0$.
- Therefore, we can conclude that $\sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n^{2}}$ diverges.
- To test $\sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n^{3}}$ for convergence, we check $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n^{3}}$.
- $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n^{3}}=\lim _{n \rightarrow \infty} \frac{1+1 / n^{2}}{2 n}=0$.
- In this case we can make no conclusion about $\sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n^{3}}$.
- To test $\sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n}$ for convergence, we check $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n}$.
- $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2 n}=\lim _{n \rightarrow \infty} \frac{n+1 / n}{2}=\infty \neq 0$.
- Therefore, we can conclude that $\sum_{n=1}^{\infty} \frac{n^{2}+1}{2 n}$ diverges.

Properties of Series

The following properties of series follow from the corresponding laws of limits:
Suppose $\sum a_{n}$ and $\sum b_{n}$ are convergent series, then the series $\sum\left(a_{n}+b_{n}\right), \quad \sum\left(a_{n}-b_{n}\right)$ and $\sum c a_{n}$ also converge. We have

$$
\sum c a_{n}=c \sum a_{n}, \quad \sum\left(a_{n}+b_{n}\right)=\sum a_{n}+\sum b_{n}, \quad \sum\left(a_{n}-b_{n}\right)=\sum a_{n}-\sum b_{n} .
$$

Example Sum the following series:

$$
\sum_{n=0}^{\infty} \frac{3+2^{n}}{\pi^{n+1}}
$$

- $\sum_{n=0}^{\infty} \frac{3+2^{n}}{\pi^{n+1}}=\sum_{n=0}^{\infty} \frac{3}{\pi^{n+1}}+\sum_{n=0}^{\infty} \frac{2^{n}}{\pi^{n+1}}$.
- $\sum_{n=0}^{\infty} \frac{3}{\pi^{n+1}}=\frac{3}{\pi}+\frac{3}{\pi^{2}}+\cdots=\frac{3 / \pi}{1-1 / \pi}=\frac{3}{(\pi-1)}$ since $r=\frac{1}{\pi}<1$.
- $\sum_{n=0}^{\infty} \frac{2^{n}}{\pi^{n+1}}=\frac{1}{\pi}+\frac{2}{\pi^{2}}+\cdots=\frac{1 / \pi}{1-2 / \pi}=\frac{1}{(\pi-2)}$, since $r=\frac{2}{\pi}<1$.
$-\sum_{n=0}^{\infty} \frac{3+2^{n}}{\pi^{n+1}}=\frac{3}{(\pi-1)}+\frac{1}{(\pi-2)}=\frac{4 \pi-7}{(\pi-1)(\pi-2)}$.

