
Definition of Natural Logarithm Function
Recall ∫

xndx =
xn+1

n + 1
+ C n 6= −1.

What happens if n = −1?
I the above formula does not make sense if n = −1.
I However, since the function f (x) = x−1 is continuous on the interval

(0,∞), we can use the fundamental theorem of calculus to construct
an anti-derivative for it.

I F.T.C. If f is a continuous function on [a, b], then the function g
defined by

g(x) =

∫ x

a

f (t)dt, a ≤ x ≤ b

is continuous on [a, b] and differentiable on (a, b), and g ′(x) = f (x)
or

d

dx

∫ x

a

f (t)dt = f (x).

Note This tells us that g(x) is an antiderivative for f (x).

.



Definition of ln(x).
Applying the F.T.C. we define a new function (an antiderivative for 1/x)
as

ln x =

∫ x

1

1

t
dt, x > 0.

This function is called the natural logarithm.
I Note that ln(x) is the area under the continuous curve y = 1

t
between 1 and x if x > 1 and minus the area under the continuous
curve y = 1

t between 1 and x if x < 1.
I We can demonstrate the relationship between the graphs of y = 1/t

and y = ln(x) using Mathematica: Graph of ln(x)
I I do not have a formula for ln(x) in terms of functions studied

before. For a given value of x say 2, because of the above
interpretation of ln(2) as an area under the graph of y = 1/t, I
could estimate the value of ln(2) using A Riemann Sum

I Before calculators, scientists used tables of logarithms which were
accurately calculated up to several decimal places using methods of
estimation similar to Riemann sums. The first such table was
published by John Napier in 1614, and is considered to have
contributed greatly to scientific progress.

.



Graph of ln(x).
We derive a number of properties of this new function f (x) = ln(x).

I Domain = (0,∞) ( This follows from the definition, since we defined
ln(x) only for values of x greater than 0)

I ln x > 0 if x > 1, ln x = 0 if x = 1, ln x < 0 if x < 1. This follows
from our comments above after the definition about how ln(x)
relates to the area under the curve y = 1/x between 1 and x .

I d(ln x)
dx = 1

x This follows from the definition of ln(x) as an
antiderivative of 1/x using the Fundamental Theorem of Calculus.

I The graph of y = ln x is increasing, continuous and concave down
on the interval (0,∞). Let f (x) = ln(x), f ′(x) = 1/x which is
always positive for x > 0 (the domain of f ), Therefore the graph of
f (x) is increasing on its domain. We have f ′′(x) = −1

x2 which is
always negative, showing that the graph of f (x) is concave down.
The function f is continuous since it is differentiable.

I The function f (x) = ln x is a one-to-one function
Since f ′(x) = 1/x which is positive on the domain of f , we can
conclude that f is a one-to-one function.

.



A number called e.
Since f (x) = ln x is a one-to-one function, there is a unique number, e,
with the property that

ln e = 1.

I We have ln(1) = 0 since
∫ 1

1
1/t dt = 0. This number is unique since

the function f (x) = ln(x) is one-to-one.
I Using a Riemann sum with 3 approximating rectangles, we see that

ln(4) > 1/1 + 1/2 + 1/3 > 1.
I Therefore by the intermediate value theorem, since f (x) = ln(x) is

continuous, there must be some number e with 1 < e < 4 for which
ln(e) = 1.

I We will be able to estimate the value of e in the next section with a
limit. e ≈ 2.7182818284590.

.



Graph of y = ln(x).

I Domain = (0,∞)
I ln x > 0 if x > 1, ln x = 0 if x = 1, ln x < 0 if x < 1.
I d(ln x)

dx = 1
x

I The graph of y = ln x is increasing, continuous and concave down
on the interval (0,∞).

I The function f (x) = ln x is a one-to-one function
I There is a unique number, e, with the property that ln e = 1.
I In the next section we will look at the limiting behavior of ln(x) as

x → 0 and x →∞.

.


