Algebraic Properties of $\ln (x)$

We can derive algebraic properties of our new function $f(x)=\ln (x)$ by comparing derivatives. We can in turn use these algebraic rules to simplify the natural logarithm of products and quotients. If a and b are positive numbers and r is a rational number, we have the following properties:
> (i) $\ln 1=0$ This follows from our previous discussion on the graph of $y=\ln (x)$.
(ii) $\ln (a b)=\ln a+\ln b$
$>$ Proof (ii) We show that $\ln (a x)=\ln a+\ln x$ for a constant $a>0$ and any value of $x>0$. The rule follows with $x=b$.
Let $f(x)=\ln x, \quad x>0$ and $g(x)=\ln (a x), \quad x>0$. We have $f^{\prime}(x)=\frac{1}{x}$ and $g^{\prime}(x)=\frac{1}{a x} \cdot a=\frac{1}{x}$.

- Since both functions have equal derivatives, $f(x)+C=g(x)$ for some constant C. Substituting $x=1$ in this equation, we get $\ln 1+C=\ln a$, giving us $C=\ln a$ and $\ln a x=\ln a+\ln x$.

Algebraic Properties of $\ln (x)$

(iii) $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$

Note that $0=\ln 1=\ln \frac{a}{a}=\ln \left(a \cdot \frac{1}{a}\right)=\ln a+\ln \frac{1}{a}$, giving us that $\ln \frac{1}{a}=-\ln a$.

- Thus we get $\ln \frac{a}{b}=\ln a+\ln \frac{1}{b}=\ln a-\ln b$.
(iv) $\ln a^{r}=r \ln a$.
- Comparing derivatives, we see that

$$
\frac{d\left(\ln x^{r}\right)}{d x}=\frac{r x^{r-1}}{x^{r}}=\frac{r}{x}=\frac{d(r \ln x)}{d x}
$$

Hence $\ln x^{r}=r \ln x+C$ for any $x>0$ and any rational number r.
Letting $x=1$ we get $C=0$ and the result holds.

Example 1

Expand

$$
\ln \frac{x^{2} \sqrt{x^{2}+1}}{x^{3}}
$$

using the rules of logarithms.
$>$ We have 4 rules at our disposal: (i) $\ln 1=0$, (ii) $\ln (a b)=\ln a+\ln b$, (iii) $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$, (iv) $\ln a^{r}=r \ln a$.
$>\ln \frac{x^{2} \sqrt{x^{2}+1}}{x^{3}} \stackrel{(I I)}{=} \ln \left(x^{2} \sqrt{x^{2}+1}\right)-\ln \left(x^{3}\right)$
$>\stackrel{(i)}{=} \ln \left(x^{2}\right)+\ln \left(\left(x^{2}+1\right)^{1 / 2}\right)-\ln \left(x^{3}\right)$
> $\stackrel{(\mathrm{Niv})}{=} 2 \ln (x)+\frac{1}{2} \ln \left(x^{2}+1\right)-3 \ln (x)$
$>=\frac{1}{2} \ln \left(x^{2}+1\right)-\ln (x)$

Example 2

Express as a single logarithm:

$$
\ln x+3 \ln (x+1)-\frac{1}{2} \ln (x+1)
$$

- We can use our four rules in reverse to write this as a single logarithm: (i) $\ln 1=0$, (ii) $\ln (a b)=\ln a+\ln b$, (iii) $\ln \left(\frac{a}{b}\right)=\ln a-\ln b$, (iv), $\ln a^{r}=r \ln a$.
$>\ln x+3 \ln (x+1)-\frac{1}{2} \ln (x+1) \stackrel{\text { (iv) }}{=} \ln x+\ln (x+1)^{3}-\ln \sqrt{x+1}$
$\stackrel{\stackrel{(i)}{=}}{=} \ln \left(x(x+1)^{3}\right)-\ln \sqrt{x+1}$
$\stackrel{(\text { (iii) }}{=} \ln \frac{x(x+1)^{3}}{\sqrt{x+1}}$

Example 3

Evaluate $\int_{1}^{e^{2}} \frac{1}{t} d t$

- From the definition of $\ln (x)$, we have

$$
\int_{1}^{e^{2}} \frac{1}{t} d t=\left.\ln (t)\right|_{1} ^{e^{2}}=\ln \left(e^{2}\right)
$$

$$
\stackrel{(i v)}{=} 2 \ln e=2 .
$$

