
Section 6.4: Permutations

In this section we study a useful formula for the number of
permutations of n objects taken k at a time.

This problem is really just a special application of the
multiplication principle, but the phenomenon occurs often
enough in reality that it is useful to pull out the general
principles and create a special name and formula for this
this situation.

Example Alan, Cassie, Maggie, Seth and Roger are friends
who want to take a photograph with three of the five
friends in it.

Alan (who likes to be thorough) makes a complete list of all
possible ways of lining up 3 out of the 5 friends for a photo
as follows:
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Section 6.4: Permutations

AMC AMS AMR ACS ACR
ACM ASM ARM ASC ARC
CAM MAS MAR CAS CAR
CMA MSA MRA CSA CRA
MAC SAM RAM SAC RCA
MCA SMA RMA SCA RAC
ASR MSR MCR MCS CRS
ARS MRS MRC MSC CSR
SAR SMR RMC CMS RCS
SRA SRM RCM CSM RSC
RSA MRS CRM SMC SCR
RAS MSR CMR SCM SRC



Section 6.4: Permutations

Alan has just attended a finite math lecture on the
multiplication principle and suddenly realizes that their
may be an easier way to count the possible photographs.

He reckons he has 5 choices for the position on the left, and

once he’s chosen who should stand on the left, he will have
4 choices for the position in the middle

and once he fills both of above positions, he has 3 choices
for the one on the right.

This gives a total of 5× 4× 3 = 60 possibilities.
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Section 6.4: Permutations

Alan has listed all Permutations of the five friends taken
3 at a time.

The number of permutations of 5 objects taken 3 at a time
has a special symbol:

P(5, 3)

and as we have seen P(5, 3) = 60.

Definition A Permutation of n objects taken k at a time
is an arrangement (Line up, Photo) of k of the n objects in
a specific order. The symbol for this number is P(n, k).
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Section 6.4: Permutations

When using the multiplication principle to count the
number of such permutations, as Alan did, the following
characteristics are key:

1. A permutation is an arrangement or sequence of
selections of objects from a single set.

2. Repetitions are not allowed. Equivalently the same
element may not appear more than once in an
arrangement. (In the example above, the photo AAA
is not possible).

3. the order in which the elements are selected or
arranged is significant. (In the above example, the
photographs AMC and CAM are different).
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Section 6.4: Permutations

Example Calculate P(10, 3), the number of photographs
of 10 friends taken 3 at a time.

P(10, 3) = 10 · 9 · 8 = 720.
Note that you start with 10 and multiply 3 numbers.

Example Calculate P(6, 4), the number of photographs of
6 friends taken 4 at a time.

P(6, 4) = 6 · 5 · 4 · 3 = 360.
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Section 6.4: Permutations

We can use the same principles that Alan did to find a
general formula for the number of permutations of n
objects taken k at a time, which follows from an
application of the multiplication principle:

P(n, k) = n · (n− 1) · (n− 2) · · · (n− k + 1).

Note that there are k consecutive numbers on the right
hand side.

Some of you may have buttons on your calculators that will
compute P(n, k). Check the manual to see how to do this.
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Section 6.4: Permutations

Example In how many ways can you choose a President,
secretary and treasurer for a club from 12 candidates, if
each candidate is eligible for each position, but no
candidate can hold 2 positions? Why are conditions 1, 2
and 3 relevant here?

P(12, 3).
Condition 1 is satisfied because we have a single set of 12
candidates for all 3 positions.
Condition 2 is satisfied because no one can hold more than
one position.
Condition 3 is satisfied because being president is different
than being treasurer or secretary.
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Section 6.4: Permutations
Example You have been asked to judge an art contest
with 15 entries. In how many ways can you assign 1st , 2nd

and 3rd place? (Express your answer as P(n, k) for some n
and k and evaluate.)

P(15, 3) = 15 · 14 · 13 = 2, 730.

Example Ten students are to be chosen from a class of 30
and lined up for a photograph. How many such
photographs can be taken? (Express your answer as
P(n, k) for some n and k and evaluate.)

P(30, 10) = 30 · 29 · 28 · 27 · 26 · 25 · 24 · 23 · 22 · 21. Note
30− 10 = 20 and we stopped at 21.

P(30, 10) = 109, 027, 350, 432, 000
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Section 6.4: Permutations

Example In how many ways can you arrange 5 math
books on a shelf.

P(5, 5) = 5 · 4 · 3 · 2 · 1. Note 5− 5 = 0 and we stopped at 1.

P(5, 5) = 120
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Factorials
The numbers P(n, n) = n · (n− 1) · (n− 2) · · · 1 are denoted
by n! or factorial n. We can rewrite our formula for P(n, k)
in terms of factorials:

P(n, k) =
n!

(n− k)!
.

Example (a) Evaluate 12!

(b) Evaluate P(12, 5).

12! = P(12, 12) = 12 · 11 · · · 2 · 1 = 479, 001, 600.

P(12, 5) = P(12,12)
P(7,7)

= 479,001,600
5,040

= 95, 040.
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Factorials

Example In how many ways can 10 people be lined up for
a photograph?

10! = P(10, 10).

Example How many three letter words(including nonsense
words) can you make from the letters of the English
alphabet, if letters cannot be repeated? (Express your
answer as P(n, k) for some n and k and evaluate.)

P(26, 3) = 15, 600.
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Permutations of objects with some alike

In this section, we will only consider permutations of
collections of n objects taken n at at time, in other words
rearrangements of n objects.
We will consider situations in which some objects are the
same. Note that if two objects in the arrangement are the
same, we get the same arrangement when we switch the
two.

Example How many words can we make by rearranging
the letters of the word

BEER?

The set {B, E,E, R} = {B, E,R} but we really have 4
letters with which to work. So let us start with the set
{B, R, E , E }. We arrange them in 4! = 24 ways:
B R E E B E R E B E E R R B E E R E B E R E E B E B R E E B E R E E B R E R B E E R E B E E R B
B R E E B E R E B E E R R B E E R E B E R E E B E B R E E B E R E E B R E R B E E R E B E E R B
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Permutations of objects with some alike
B R E E B E R E B E E R R B E E R E B E R E E B E B R E E B E R E E B R E R B E E R E B E E R B
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If we just want the words, each entry in the top row gives
the same word as the entry below it on the bottom row. In
other words, if we switch the two E’s in any arrangement,
we do not get a new word.
So if we count all permutations of 4 letters, we over count
the number of words. Thus among the 4! = 24
arrangements of the 4 letters above, the word EEBR
appears twice. Similarly every other word appears twice on
the list of 4! arrangements. Thus the number of different
words we can form by rearranging the letters must be

4!/2 =
4!

2!

Note that 2! counts the number of ways we can permute
the E’s in any given arrangement.



Permutations of objects with some alike

In general the number of permutations of n objects with r
of the objects identical is

n!

r!

Note that
n!

r!
= P(n, n− r).

We can see this as follows. We have n positions to fill.
P(n, n− r) is the number of ways to put the n− r elements
which are unique into the n positions. Once we have done
this we just fill in the remaining positions with the
repeated element.
From our previous example:
B R B R B R R B R B R B B R B R B R R B R B R B
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Permutations of objects with some alike

Example How many distinct words(including nonsense
words) can be made from rearrangements of the word

ALPACA

6!

3!
. There are 6 letters in ALPACA and one of them, 'A' is

repeated 3 times. 6!
3!

= 720
6

= 120
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Permutations of objects with some alike

Suppose given a collection of n objects containing k subsets
of objects in which the objects in each subset are identical
and objects in different subsets are not identical. Then the
number of different permutations of all n objects is

n!

r1! · r2! · · · rk!
,

where r1 is the number of objects in the first subset, r2 is
the number of objects in the second subset, etc.

Note that if you make the collection of objects into a set,
the set has k elements in it.
Note that for a subset of size 1, we have 1! = 1, so this
formula is a generalization of the previous one.
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Permutations of objects with some alike

Example How many distinct words(including nonsense
words) can be made from rearrangements of the word

BANANA

{B, A, N,A, N, A} = {A, B, N} or k = 3. There are 6
letters in BANANA.
The 'A' is repeated 3 times.
The 'N' is repeated 2 times.
The 'B' is repeated once.

Hence the answer is
6!

1! · 2! · 3!
.

As a safety check, note that 1 + 2 + 3 = 6.
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{B, A, N,A, N, A} = {A, B, N} or k = 3. There are 6
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As a safety check, note that 1 + 2 + 3 = 6.



Permutations of objects with some alike

Example How many distinct words(including nonsense
words) can be made from rearrangements of the word

BOOKKEEPER

10!

1! · 3! · 2! · 2! · 1! · 1!
.

There are 10 letters in BOOKKEEPER. In alphabetical
order, B↔ 1, E↔ 3, K↔ 2, O↔ 2, P↔ 1, R↔ 1.

Note that the total number of letters is the sum of the
multiplicities of the distinct letters.

10!
1!·3!·2!·2!·1!·1!

= 3,628,800
6·2·2 = 151, 200.
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Taxi cab Geometry

On the street map shown below, any route that a taxi cab
can take from the point A to the point B if they always
travel south or east can be described uniquely as a
sequence of S’s and E’s (S for South and E for East). To
get from A to B the taxi driver must travel south for four
blocks and east for five blocks. Any sequence of 4 S’s and 5
E’s describes such a route and two routes are the same only
if the sequences describing them are the same. Thus the
number of taxi cab routes from A to B is the number of
different rearrangements of the sequence SSSSEEEEE

which is
9!

4!5!
.



Taxi cab Geometry

Here we show the sequence SSSSEEEEE in red and the
sequence ESSEEESES in blue.

A

B

s

s

Draw the sequence SEESSEEES.
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Draw the sequence SEESSEEES.



Taxi cab Geometry

SEESSEEES is drawn in green.
A

B

s

s



Taxi cab Geometry
Example A streetmap of Mathville is given below. You
arrive at the Airport at A and wish to take a taxi to
Pascal’s house at P. The taxi driver, being an honest sort,
will take a route from A to P with no backtracking, always
traveling south or east.

C

V

A

P

s
s

s

s



Taxi cab Geometry
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(a) How many such routes are possible from A to P?

You need to go 4 blocks south and 5 blocks east for a total
of 9 blocks so the number of routes is

9!

4! · 5!
=

9 · 8 · 7 · 6
4 · 3 · 2 · 1

= 9 · 2 · 7 = 126.
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(a) How many such routes are possible from A to P?

You need to go 4 blocks south and 5 blocks east for a total
of 9 blocks so the number of routes is

9!

4! · 5!
=

9 · 8 · 7 · 6
4 · 3 · 2 · 1

= 9 · 2 · 7 = 126.
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(b) If you insist on stopping off at the Combinatorium at
C, how many routes can the taxi driver take from A to P?

This is really two taxicab problems combined with the
Multiplication Principle. The answer, in words, is ’the
number of paths from A to C’ times ’the number of paths

from C to P’. The first is
4!

2! · 2!
= 6 and the second is

5!

2! · 3!
= 10 so the answer is 6 · 10 = 60.
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(b) If you insist on stopping off at the Combinatorium at
C, how many routes can the taxi driver take from A to P?

This is really two taxicab problems combined with the
Multiplication Principle. The answer, in words, is ’the
number of paths from A to C’ times ’the number of paths

from C to P’. The first is
4!

2! · 2!
= 6 and the second is

5!

2! · 3!
= 10 so the answer is 6 · 10 = 60.
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(c) If wish to stop off at both the
combinatorium at C and the Venni-
tarium at V, how many routes can
your taxi driver take?

This is three taxicab problem. The answer, in words, is ’the
number of paths from A to C’ times ’the number of paths
from C to V’ times ’the number of paths from V to P. The

first is
4!

2! · 2!
= 6, the second is

3!

1! · 2!
= 3 and the third is

2!

1! · 1!
= 2 so the answer is 6 · 3 · 2 = 36.
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(d) If you wish to stop off at ei-
ther C or V(at least one), how many
routes can the taxi driver take.

This certainly the most complicated of this set of problems.
It involves not only taxis but also the Inclusion-Exclusion
Principle. To see this, suppose C denotes the set of all
paths from A to P that go through C and that V denotes
the set of all paths from A to P that go through V.

The number we want is n(C ∪ V ) since C ∪ V is the set of
all paths which go through C or V.
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Suppose C denotes the set of all paths from A to P that
go through C and that V denotes the set of all paths
from A to P that go through V.

The number we want is n(C ∪ V ) since C ∪ V is the set

of all paths which go through C or V.

We have already computed n(C) = 60. For n(V ) we have

n(V ) =
7!

3! · 4!
· 2!

1! · 1!
=

7 · 6 · 5
6

· 2 = 70.

We still need n(C ∩ V ) but C ∩ V is the set of all paths
which go through both C and V and we have already
computed this: n(C ∩ V ) = 36.

Hence
n(C ∪ V ) = 60 + 70− 36 = 94
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=
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· 2 = 70.

We still need n(C ∩ V ) but C ∩ V is the set of all paths
which go through both C and V and we have already
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Hence
n(C ∪ V ) = 60 + 70− 36 = 94



Taxi cab Geometry

Example Christine, on her morning run, wants to get from
point A to point B.

A

B

D

(a)How many routes with no backtracking can she take?
(b) How many of those routes go through the point D?
(c) If Christine wants to avoid the Doberman at D, how
many routes can she take?
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A

B

D

(a)How many routes with no backtracking
can she take?
(b) How many of those routes go through the
point D?
(c) If Christine wants to avoid the Doberman
at D, how many routes can she take?

(a)
(5 + 7)!

5! · 7!

(b)
(3 + 4)!

3! · 4!
· (2 + 3)!

2! · 3!

(c)
(5 + 7)!

5! · 7!
−

(
(3 + 4)!

3! · 4!
· (2 + 3)!

2! · 3!

)


