
Bayes’ Theorem
In this section, we look at how we can use information
about conditional probabilities to calculate the reverse
conditional probabilities such as in the example below. We
already know how to solve these problems with tree
diagrams. Bayes’ theorem just states the associated
algebraic formula.

Example Suppose that a factory has two machines,
Machine A and Machine B, both producing jPhone touch
screens. Forty percent of their touch screens come from
Machine A and 60% of their touch screens come from
Machine B. Ten percent of the touch screens produced by
Machine A are defective and five percent of the touch
screens from Machine B are defective. If I randomly choose
a touch screen from those produced by both machines and
find that it is defective, what is the probability that it came
from machine A?
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Bayes’ Theorem

We can draw a tree diagram representing the information
we are given. If we choose a touch screen at random from
those produced in the factory, we let MA be the event that
it came from Machine A and let MB be the event that it
came from Machine B. We let D denote the event that the
touch screen is defective and let ND denote the event that
it is not defective. Fill in the appropriate probabilities on
the tree diagram on the left on the next page.
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Bayes’ Theorem

We can now calculate P
(
MA

∣∣D)
=

P(MA ∩D)

P(D)
=

P(MA ∩D)

P
(
D

∣∣MA
)
·P(MA) + P

(
D

∣∣MB
)
·P(MB)

. Note the

event D is shown in red above and the event MA ∩D is
shown in blue.
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Bayes’ Theorem

Let E1 and E2 be mutually exclusive events (E1 ∩ E2 = ∅)
whose union is the sample space, i.e. E1 ∪ E2 = S. Let F
be an event in S for which P(F ) 6= 0. Then

P
(
E1

∣∣F)
=

P(E1 ∩ F )

P(F )
=

P(E1 ∩ F )

P(E1 ∩ F ) + P(E2 ∩ F )
=

P(E1)P
(
F

∣∣E1

)
P(E1)P

(
F

∣∣E1

)
+ P(E2)P

(
F

∣∣E2

) .

Note that if we cross-classify outcomes in the sample space
according to whether they belong to E1 or E2 and whether
they belong to F or F ′, we get a tree diagram as above
from which we can calculate the probabilities.
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Predictive value of diagnostic test
The above analysis allows us to gain insight a commonly
misunderstood point about the accuracy of tests for
diseases and drugs. The predictive value of a diagnostic
test does not depend entirely on the sensitivity of the test.
It also depend on the prevalence of the disease. Many
people when asked the following question “If a swimmer
fails a drug test that is known to be 95 percent
accurate(whether they have drugs in their system or not),
how likely is it that he/she is really guilty?” will answer 95
percent, but of course you know that you need more
information in order to answer the question. Check out the
following article on the subject:

Doctors flunk quiz on screening-test math

If you are more legally inclined, here is a discussion of
Bayes Theorem as it applies to criminal trials.
Let’s see what happens in a few examples.

https://www.sciencenews.org/blog/context/doctors-flunk-quiz-screening-test-math
'http://www.agenarisk.com/resources/probability_puzzles/bayes_evidence.shtml'


Predictive value of diagnostic test
The above analysis allows us to gain insight a commonly
misunderstood point about the accuracy of tests for
diseases and drugs. The predictive value of a diagnostic
test does not depend entirely on the sensitivity of the test.
It also depend on the prevalence of the disease. Many
people when asked the following question “If a swimmer
fails a drug test that is known to be 95 percent
accurate(whether they have drugs in their system or not),
how likely is it that he/she is really guilty?” will answer 95
percent, but of course you know that you need more
information in order to answer the question. Check out the
following article on the subject:

Doctors flunk quiz on screening-test math

If you are more legally inclined, here is a discussion of
Bayes Theorem as it applies to criminal trials.

Let’s see what happens in a few examples.

https://www.sciencenews.org/blog/context/doctors-flunk-quiz-screening-test-math
'http://www.agenarisk.com/resources/probability_puzzles/bayes_evidence.shtml'


Predictive value of diagnostic test
The above analysis allows us to gain insight a commonly
misunderstood point about the accuracy of tests for
diseases and drugs. The predictive value of a diagnostic
test does not depend entirely on the sensitivity of the test.
It also depend on the prevalence of the disease. Many
people when asked the following question “If a swimmer
fails a drug test that is known to be 95 percent
accurate(whether they have drugs in their system or not),
how likely is it that he/she is really guilty?” will answer 95
percent, but of course you know that you need more
information in order to answer the question. Check out the
following article on the subject:

Doctors flunk quiz on screening-test math

If you are more legally inclined, here is a discussion of
Bayes Theorem as it applies to criminal trials.
Let’s see what happens in a few examples.

https://www.sciencenews.org/blog/context/doctors-flunk-quiz-screening-test-math
'http://www.agenarisk.com/resources/probability_puzzles/bayes_evidence.shtml'


Predictive value of diagnostic test

Example Suppose, for example a test for the HIV virus is
95% accurate.The test gives a positive result for 95% of
those taking the test who are HIV positive. Also the test
gives a negative result for 95% of those taking the test who
are not HIV positive.

(a) According to a recent estimate, approximately one
million people in the U.S. are HIV positive. The population
of the U.S. is approximately 308 million. Suppose a random
U.S. resident takes the aids test and tests positive, what is
the probability that the person is infected given that they
have tested positive, That is what is P

(
I
∣∣P)

?

(We let P denote the event that a person chosen at random
from the population tests positive, we let I denote the
event that a person chosen at random is infected.)



Predictive value of diagnostic test
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≈ 0.0583 = 5.83%



Predictive value of diagnostic test
(b) In country X, forty percent of the residents are HIV
positive. Suppose a random resident of Country X takes
the aids test and tests positive, what is the probability that
the person is infected given that they have tested positive,
That is what is P

(
I
∣∣P)

?
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0.4 · 0.95

0.6 · 0.05 + 0.4 · 0.95
=

0.38

0.03 + 0.38
=

0.38

0.41
≈

0.9268 ≈ 93%
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Predictive value of diagnostic test
Example A test for Lyme disease is 60% accurate when a
person has the disease and 99% accurate when a person
does not have the disease. In Country Y, 0.01% of the
population has Lyme disease. What is the probability that
a person chosen randomly from the population who test
positive for the disease actually has the disease?
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0.00006 + 0.009999
=

0.00006

0.010059
≈

0.006.
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A legal example

A crime has been committed and the only evidence is a
blood spatter that could only have come from the
perpetrator. The chance of a random individual having the
same blood type as that of the spatter is 10%. Joe has
been arrested and charged. The trial goes as follows.
Prosecutor: Since there is only a 10% chance that Joe’s
blood would match, there is a 90% chance that Joe did it.
That’s good enough for me.
Defence Lawyer: There are two hundred people in the
neighborhood who could have done the crime. Twenty of
them will have the same blood type as the sample. Hence

the chances that Joe did it are
1

20
= 5% so there is a 95%

chance that Joe is innocent. That’s good enough for me.



The ghost of the Reverend Thomas Bayes: You’re all
nuts!

./figures/guilty.{ps,eps} not found (or no BBox)
If P(I) = x and so P(G) = 1− x then

P
(
I
∣∣M)

=
0.1 · x

0.1 · x + 1 · (1− x)
=

0.1x

1− 0.9x
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If you think that Joe is guilty, then x = 0 and after seeing
the evidence you still think Joe is guilty, P

(
I
∣∣M)

= 0.
If you think that Joe is innocent, then x = 1 and after
seeing the evidence you still think Joe is innocent,
P

(
I
∣∣M)

= 1.
If you think that Joe there is a 40% change that Joe is
guilty, then x = 0.4 and after seeing the evidence
P

(
I
∣∣M)

= 0.0625.
If you think that the police just searched a blood type
database until they came up with a name in the
neighborhood, then you should probably start with the

defense lawyer’s idea that x = P (I) =
19

20
= 95%. Now after

seeing the evidence P
(
I
∣∣M)

=
0.095

1− 0.855
=

0.095

0.145
= 0.66.
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General Bayes’ Theorem

Let E1, E2, . . . , En be (pairwise) mutually exclusive events
such that E1 ∪ E2 ∪ · · · ∪ En = S, where S denotes the
sample space. Let F be an event such that P(F ) 6= 0, Then

P
(
E1

∣∣F)
=

P(E1 ∩ F )

P(F )
=

P(E1 ∩ F )

P(E1 ∩ F ) + P(E2 ∩ F ) + · · ·+ P(En ∩ F )
=

P(E1)P
(
F

∣∣E1

)
P(E1)P

(
F

∣∣E1

)
+ P(E2)P

(
F

∣∣E2

)
+ · · ·+ P(En)P

(
F
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General Bayes’ Theorem

Example A pile of 8 playing cards has 4 aces, 2 kings and
2 queens. A second pile of 8 playing cards has 1 ace, 4
kings and 3 queens. You conduct an experiment in which
you randomly choose a card from the first pile and place it
on the second pile. The second pile is then shuffled and you
randomly choose a card from the second pile. If the card
drawn from the second deck was an ace, what is the
probability that the first card was also an ace?



General Bayes’ Theorem
Let A be the event that you draw an ace, K the event that
you draw a king and Q be the event that you draw a queen.
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General Bayes’ Theorem

In the first round there are 4 + 2 + 2 = 8 cards so the
probabilities in the first round are
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General Bayes’ Theorem
In the second round there are 1 + 4 + 3 + 1 = 9 cards and
the probabilities are different at the various nodes. If you
draw an ace in round 1 the cards are 2 aces, 4 kings and 3
queens so we get
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General Bayes’ Theorem
If you draw a king in round 1 the cards are 1 ace, 5 kings
and 3 queens so we get
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General Bayes’ Theorem

If you draw a queen in round 1 the cards are 1 ace, 4 kings
and 4 queens so we get
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General Bayes’ Theorem A2
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The question asks for

P
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)
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P(A ∩ A2)
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=

2

3
.


