Section 8.5: Expected Value and Variance

Have you ever wondered whether it would be "worth it" to buy a lottery ticket every week, or pondered on questions such as "If I were offered a choice between a million dollars or a 1 in 100 chance of getting a billion dollars, which would I choose?". One method of deciding on the answers to these questions is to calculate the expected earnings of the enterprise, and aim for a higher expected value. This is most certainly a useful decision making tool when we are contemplating a strategy which involves repeating several trials of an experiment such as investing in stocks or choosing where to locate our business or where to fish. For once off decisions where the stakes are high, such as the choice between a sure 1 million dollars or a 1 in 100 chance of a billion dollars, it is unclear whether this is a useful tool.

Example 1 John works as a tour guide in Dublin for the company Excellent Tours Ltd.. Excellent Tours has a website where tourists sign up for the tours. For any given week, if John has 200 people or more take his tours he earns $€ 1,000$. If the number of tourists who take John's tours is between 100 and 199, John earns $€ 700$ and if the number of tourists taking his tours is less than 100 , John earns $€ 500$ for the week. Thus John has a variable weekly income.

Example 1 John works as a tour guide in Dublin for the company Excellent Tours Ltd.. Excellent Tours has a website where tourists sign up for the tours. For any given week, if John has 200 people or more take his tours he earns $€ 1,000$. If the number of tourists who take John's tours is between 100 and 199, John earns $€ 700$ and if the number of tourists taking his tours is less than 100 , John earns $€ 500$ for the week. Thus John has a variable weekly income.

Because he has kept records over the past few years, John knows that he earns $€ 1,000$ fifty percent of the time, $€ 700$ thirty percent of the time and $€ 500$ twenty percent of the time. There is no discernible pattern to the variability, so John's weekly income is a random variable with a probability distribution:

Income	Probability
$€ 1,000$	0.5
$€ 700$	0.3
$€ 500$	0.2

Income	Probability
$€ 1,000$	0.5
$€ 700$	0.3
$€ 500$	0.2

John has a lot of fixed weekly costs, such as rent, a gas bill and an electricity bill. John's fixed costs are about to increase because a new weekly charge for water has been introduced along with a significant increase in the cost of public transport which John uses to get to work.

Income	Probability
$€ 1,000$	0.5
$€ 700$	0.3
$€ 500$	0.2

John has a lot of fixed weekly costs, such as rent, a gas bill and an electricity bill. John's fixed costs are about to increase because a new weekly charge for water has been introduced along with a significant increase in the cost of public transport which John uses to get to work. John normally saves some of the money from good weeks to cover costs in lean weeks when his income is lower than his fixed costs. However, in order to be able to cover fixed costs (and buy food) in the long run, John's average income must be greater than his fixed costs.

To calculate the average income, one might consider what will happen over the next fifty weeks. For roughly half of these weeks (25 weeks), John's income will be $€ 1,000$, for roughly $(0.3 \times 50=15)$ weeks, John's income will be $€ 700$ and for roughly $(0.2 \times 50=10)$ weeks, John's income will be $€ 500$.

To calculate the average income, one might consider what will happen over the next fifty weeks. For roughly half of these weeks (25 weeks), John's income will be $€ 1,000$, for roughly $(0.3 \times 50=15)$ weeks, John's income will be $€ 700$ and for roughly $(0.2 \times 50=10)$ weeks, John's income will be $€ 500$. Thus the average over the next fifty weeks will be roughly:

$$
\begin{aligned}
& \frac{(25 \times € 1,000)+(15 \times € 700)+(10 \times € 500)}{50} \\
& =\frac{(50 \times 0.5 \times € 1,000)+(50 \times 0.3 \times € 700)+(50 \times 0.2 \times € 500)}{50} \\
& =\frac{50[(0.5 \times € 1,000)+(0.3 \times € 700)+(0.2 \times € 500)]}{50} \\
& =(0.5 \times € 1,000)+(0.3 \times € 700)+(0.2 \times € 500)=€ 810 .
\end{aligned}
$$

We can see from the calculation above, that we would have gotten the same answer if we had use 100 weeks or any other (large) number of weeks. The number € 810 is called the expected value of John's income and we would expect John's income to average to this amount in the long run (over the course of many weeks).

Expected Value of a Random Variable

We can pull out the general principles of the above calculation to get the expected value of any random variable. If X is a random variable with possible values $x_{1}, x_{2}, \ldots, x_{n}$ and corresponding probabilities $p_{1}, p_{2}, \ldots, p_{n}$, the expected value of X, denoted by $\mathbf{E}(X)$, is

$$
\mathbf{E}(X)=x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{n} p_{n}
$$

Outcomes	Probability	Out. \times Prob.
\mathbf{X}	$\mathbf{P}(X)$	$X \mathbf{P}(X)$
x_{1}	p_{1}	$x_{1} p_{1}$
x_{2}	p_{2}	$x_{2} p_{2}$
\vdots	\vdots	\vdots
x_{n}	p_{n}	$x_{n} p_{n}$
		$\mathbf{S u m}=\mathbf{E}(X)$

We can interpret the expected value as the long term average of the outcomes of the experiment over a large number of trials. From the table, we see that the calculation of the expected value is the same as that for the average of a set of data, with relative frequencies replaced by probabilities.

We can interpret the expected value as the long term average of the outcomes of the experiment over a large number of trials. From the table, we see that the calculation of the expected value is the same as that for the average of a set of data, with relative frequencies replaced by probabilities.

Warning: The expected value really ought to be called the expected mean. It is NOT the value you most expect to see but rather the average (or mean) of the values you see over the course of many trials.

Example An experiment consists of flipping a coin 4 times and observing the sequence of heads and tails. The random variable X is the number of heads in the observed sequence. Last time we found the following probability distribution for X :

X	$\mathbf{P}(\mathrm{X})$
0	$1 / 16$
1	$4 / 16$
2	$6 / 16$
3	$4 / 16$
4	$1 / 16$

Find the expected number of heads for a trial of this experiment, that is find $\mathbf{E}(X)$.

Find the expected number of heads for a trial of this experiment, that is find $\mathbf{E}(X)$.
$\mathbf{E}(X)=\frac{1}{16} \cdot 0+\frac{4}{16} \cdot 1+\frac{6}{16} \cdot 2+\frac{4}{16} \cdot 3+\frac{1}{16} \cdot 4=$
$\frac{0+4+12+12+4}{16}=\frac{32}{16}=2$.

Example

Successful NFL running plays The following probability distribution from "American Football" Statistics in Sports, 1998, by Hal Stern, has an approximation of the probabilities for yards gained on a running play in the NFL. Actual play by play data was used to estimate the probabilities. (-4 represents 4 yards lost on a running play).

x, yards	prob	x, yards	prob
-4	.020	6	.090
-2	.060	8	.060
-1	.070	10	.050
0	.150	15	.085
1	.130	30	.010
2	.110	50	.004
3	.090	99	.001
4	.070		

Find the expected number of yards gained on a running play in the NFL.

Find the expected number of yards gained on a running play in the NFL.
$\mathrm{E}(X)=(-4) \cdot .020+(-2) \cdot 0.060+(-1) \cdot 0.070+0 \cdot 0.150+1$. $0.130+2 \cdot 0.110+3 \cdot 0.090+4 \cdot 0.070+6 \cdot 0.090+8 \cdot 0.060+10 \cdot$ $0.050+15 \cdot 0.085+30 \cdot 0.010+50 \cdot 0.004+99 \cdot 0.001=4.024$

Example

We saw last time that in a game of American roulette where you bet $\$ 1$ on red, the probability distribution for your earnings, denoted by X , is given by:

Example

We saw last time that in a game of American roulette where you bet $\$ 1$ on red, the probability distribution for your earnings, denoted by X , is given by:

\mathbf{X}	$\mathbf{P}(\mathrm{X})$
1	$18 / 38$
-1	$20 / 38$

(a) What are your expected earnings for this bet? (What is $\mathbf{E}(X)$?)

Example

We saw last time that in a game of American roulette where you bet $\$ 1$ on red, the probability distribution for your earnings, denoted by X , is given by:

\mathbf{X}	$\mathbf{P}(\mathrm{X})$
1	$18 / 38$
-1	$20 / 38$

(a) What are your expected earnings for this bet? (What is $\mathbf{E}(X) ?)$
$\mathbf{E}(X)=1 \cdot \frac{18}{38}+(-1) \cdot \frac{20}{38}=-\frac{2}{18}$.

Example

We saw last time that in a game of American roulette where you bet $\$ 1$ on red, the probability distribution for your earnings, denoted by X , is given by:

\mathbf{X}	$\mathbf{P}(\mathrm{X})$
1	$18 / 38$
-1	$20 / 38$

(a) What are your expected earnings for this bet? (What is $\mathbf{E}(X)$?)
$\mathbf{E}(X)=1 \cdot \frac{18}{38}+(-1) \cdot \frac{20}{38}=-\frac{2}{18}$.
(b) How much would you expect to win/lose if you bet $\$ 1$ on red 100 times?

Example

We saw last time that in a game of American roulette where you bet $\$ 1$ on red, the probability distribution for your earnings, denoted by X , is given by:

\mathbf{X}	$\mathbf{P}(\mathrm{X})$
1	$18 / 38$
-1	$20 / 38$

(a) What are your expected earnings for this bet? (What is $\mathbf{E}(X)$?)
$\mathbf{E}(X)=1 \cdot \frac{18}{38}+(-1) \cdot \frac{20}{38}=-\frac{2}{18}$.
(b) How much would you expect to win/lose if you bet $\$ 1$ on red 100 times?
$100 \cdot \mathbf{E}(X)=-\frac{200}{18} \approx-\$ 11.11$.
(c) What would the casino expect to earn if you bet $\$ 1$ on red 100 times?

Your loss is the casino's gain so the casino's earnings are the negative of your loss:
(c) What would the casino expect to earn if you bet $\$ 1$ on red 100 times?

Your loss is the casino's gain so the casino's earnings are the negative of your loss: $\$ 11.11$.

Example

The rules of a carnival game are as follows:

1. The player pays $\$ 1$ to play the game.
2. The player then flips a fair coin, if the player gets a head the game attendant gives the player $\$ 2$ and the player stops playing.
3. If the player gets a tail on the coin, the player rolls a fair six-sided die. If the player gets a six, the game attendant gives the player $\$ 1$ and the game is over.
4. If the player does not get a six on the die, the game is over and the game attendant gives nothing to the player.

Let X denote the player's (net)earnings for this game, last time, we saw that the probability distribution of X is given by:

\mathbf{X}	$\mathbf{P}(\mathrm{X})$
-1	$5 / 12$
0	$1 / 12$
1	$1 / 2$

(a) What are the expected earnings for the player for each play of this game?

Let X denote the player's (net)earnings for this game, last time, we saw that the probability distribution of X is given by:

$$
\begin{array}{c|c}
\mathbf{X} & \mathbf{P}(\mathrm{X}) \\
\hline-1 & 5 / 12 \\
0 & 1 / 12 \\
1 & 1 / 2
\end{array}
$$

(a) What are the expected earnings for the player for each play of this game?
$\mathbf{E}(X)=(-1) \cdot \frac{5}{12}+0 \cdot \frac{1}{12}+1 \cdot \frac{1}{2}=\frac{-5+0+6}{12}=\frac{1}{12} \approx \$ 0.08$.

Let X denote the player's (net)earnings for this game, last time, we saw that the probability distribution of X is given by:

$$
\begin{array}{c|c}
\mathbf{X} & \mathbf{P}(\mathrm{X}) \\
\hline-1 & 5 / 12 \\
0 & 1 / 12 \\
1 & 1 / 2
\end{array}
$$

(a) What are the expected earnings for the player for each play of this game?
$\mathrm{E}(X)=(-1) \cdot \frac{5}{12}+0 \cdot \frac{1}{12}+1 \cdot \frac{1}{2}=\frac{-5+0+6}{12}=\frac{1}{12} \approx \$ 0.08$.
(b) What are the expected earnings for the game host for each play of this game?

Let X denote the player's (net)earnings for this game, last time, we saw that the probability distribution of X is given by:

$$
\begin{array}{c|c}
\mathbf{X} & \mathbf{P}(\mathrm{X}) \\
\hline-1 & 5 / 12 \\
0 & 1 / 12 \\
1 & 1 / 2
\end{array}
$$

(a) What are the expected earnings for the player for each play of this game?
$\mathrm{E}(X)=(-1) \cdot \frac{5}{12}+0 \cdot \frac{1}{12}+1 \cdot \frac{1}{2}=\frac{-5+0+6}{12}=\frac{1}{12} \approx \$ 0.08$.
(b) What are the expected earnings for the game host for each play of this game?

Host's earnings are minus your earnings:

Let X denote the player's (net)earnings for this game, last time, we saw that the probability distribution of X is given by:

$$
\begin{array}{c|c}
\mathbf{X} & \mathbf{P}(\mathrm{X}) \\
\hline-1 & 5 / 12 \\
0 & 1 / 12 \\
1 & 1 / 2
\end{array}
$$

(a) What are the expected earnings for the player for each play of this game?
$\mathrm{E}(X)=(-1) \cdot \frac{5}{12}+0 \cdot \frac{1}{12}+1 \cdot \frac{1}{2}=\frac{-5+0+6}{12}=\frac{1}{12} \approx \$ 0.08$.
(b) What are the expected earnings for the game host for each play of this game?
Host's earnings are minus your earnings: $-\frac{1}{12} \approx-\$ 0.08$.
(c) How much would you expect the game host to win/lose if 100 people play this game?
(c) How much would you expect the game host to win/lose if 100 people play this game?
$-100 \cdot \frac{1}{12} \approx-\$ 8.00$.

Variance and standard deviation of a random variable

Let us return to the initial example of John's weekly income which was a random variable with probability distribution:

Income	Probability
$€ 1,000$	0.5
$€ 700$	0.3
$€ 500$	0.2

To find the variance (average squared distance from the mean, $\mu=€ 810$) one might again estimate that over the next 50 weeks, the (population) variance would be roughly

$$
\begin{aligned}
& \frac{\left[25 \times(€ 1,000-€ 810)^{2}\right]+\left[15 \times(€ 700-€ 810)^{2}\right]+\left[10 \times(€ 500-€ 810)^{2}\right]}{50} \\
& =\frac{\left[50 \times 0.5 \times(€ 1,000-€ 810)^{2}\right]+\left[50 \times 0.3 \times(€ 700-€ 810)^{2}\right]+\left[50 \times(0.2) \times(€ 500-€ 810)^{2}\right]}{50} \\
& =\frac{56\left(\left[0.5 \times(€ 1,000-€ 810)^{2}\right]+\left[0.3 \times(€ 700-€ 810)^{2}\right]+\left[(0.2) \times(€ 500-€ 810)^{2}\right]\right)}{50} \\
& =0.5 \times(€ 1,000-€ 810)^{2}+0.3 \times(€ 700-€ 810)^{2}+(0.2) \times(€ 500-€ 810)^{2} \\
& =0.5 \times(190)^{2}+0.3 \times(-110)^{2}+0.2 \times(-310)^{2}=40,900
\end{aligned}
$$

$$
\begin{aligned}
& {\left[25 \times(€ 1,000-€ 810)^{2}\right]+\left[15 \times(€ 700-€ 810)^{2}\right]+\left[10 \times(€ 500-€ 810)^{2}\right]} \\
& =\frac{\left[50 \times 0.5 \times(€ 1,000-€ 810)^{2}\right]+\left[50 \times 0.3 \times(€ 700-€ 810)^{2}\right]+\left[50 \times(0.2) \times(€ 500-€ 810)^{2}\right]}{50} \\
& =\frac{50\left(\left[0.5 \times(€ 1,000-€ 810)^{2}\right]+\left[0.3 \times(€ 700-€ 810)^{2}\right]+\left[(0.2) \times(€ 500-€ 810)^{2}\right]\right)}{50} \\
& =0.5 \times(€ 1,000-€ 810)^{2}+0.3 \times(€ 700-€ 810)^{2}+(0.2) \times(€ 500-€ 810)^{2} \\
& =0.5 \times(190)^{2}+0.3 \times(-110)^{2}+0.2 \times(-310)^{2}=40,900
\end{aligned}
$$

Recall that the standard deviation is the square root of the variance, so a good estimate for the standard deviation of John's income is given by $€ 202.24$.

As with the calculations for the expected value, we notice that if we had chosen any large number of weeks in our estimate, our estimates for the variance and standard deviation would have been the same as that calculated above. We can pull out the general principles to get a formula for the variance and standard deviation for and random variable.

As with the calculations for the expected value, we notice that if we had chosen any large number of weeks in our estimate, our estimates for the variance and standard deviation would have been the same as that calculated above. We can pull out the general principles to get a formula for the variance and standard deviation for and random variable.

If X is a random variable with values $x_{1}, x_{2}, \ldots, x_{n}$, corresponding probabilities $p_{1}, p_{2}, \ldots, p_{n}$, and expected value $\mu=\mathbf{E}(X)$, then

As with the calculations for the expected value, we notice that if we had chosen any large number of weeks in our estimate, our estimates for the variance and standard deviation would have been the same as that calculated above. We can pull out the general principles to get a formula for the variance and standard deviation for and random variable.

If X is a random variable with values $x_{1}, x_{2}, \ldots, x_{n}$, corresponding probabilities $p_{1}, p_{2}, \ldots, p_{n}$, and expected value $\mu=\mathbf{E}(X)$, then

$$
\text { Variance }=\sigma^{2}(X)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+\cdots+p_{n}\left(x_{n}-\mu\right)^{2}
$$

As with the calculations for the expected value, we notice that if we had chosen any large number of weeks in our estimate, our estimates for the variance and standard deviation would have been the same as that calculated above. We can pull out the general principles to get a formula for the variance and standard deviation for and random variable.

If X is a random variable with values $x_{1}, x_{2}, \ldots, x_{n}$, corresponding probabilities $p_{1}, p_{2}, \ldots, p_{n}$, and expected value $\mu=\mathbf{E}(X)$, then

$$
\text { Variance }=\boldsymbol{\sigma}^{2}(X)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+\cdots+p_{n}\left(x_{n}-\mu\right)^{2}
$$

and

Standard Deviation $=\boldsymbol{\sigma}(X)=\sqrt{\text { Variance }}$.

$$
\text { Variance }=\boldsymbol{\sigma}^{2}(X)=p_{1}\left(x_{1}-\mu\right)^{2}+p_{2}\left(x_{2}-\mu\right)^{2}+\cdots+p_{n}\left(x_{n}-\mu\right)^{2}
$$

Standard Deviation $=\boldsymbol{\sigma}(X)=\sqrt{\text { Variance }}$.

x_{i}	p_{i}	$x_{i} p_{i}$	$\left(x_{i}-\mu\right)$	$\left(x_{i}-\mu\right)^{2}$	$p_{i}\left(x_{i}-\mu\right)^{2}$
x_{1}	p_{1}	$x_{1} p_{1}$	$\left(x_{1}-\mu\right)$	$\left(x_{1}-\mu\right)^{2}$	$p_{1}\left(x_{1}-\mu\right)^{2}$
x_{2}	p_{2}	$x_{2} p_{2}$	$\left(x_{2}-\mu\right)$	$\left(x_{2}-\mu\right)^{2}$	$p_{2}\left(x_{2}-\mu\right)^{2}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
x_{n}	p_{n}	$x_{n} p_{n}$	$\left(x_{n}-\mu\right)$	$\left(x_{n}-\mu\right)^{2}$	$p_{n}\left(x_{n}-\mu\right)^{2}$
		Sum $=\mu$			Sum $=\boldsymbol{\sigma}^{2}(X)$

Example

The rules of a carnival game are as follows:

1. The player pays $\$ 1$ to play the game.
2. The player then flips a fair coin, if the player gets a head the game attendant gives the player $\$ 2$ and the player stops playing.
3. If the player gets a tail on the coin, the player rolls a fair six-sided die. If the player gets a six, the game attendant gives the player $\$ 1$ and the game is over.
4. If the player does not get a six on the die, the game is over and the game attendant gives nothing to the player.

Let X denote the player's (net)earnings for this game, last day, we saw that the probability distribution of X is given by:

X	$\mathbf{P}(\mathrm{X})$
-1	$5 / 12$
0	$1 / 12$
1	$1 / 2$

Let X denote the player's (net)earnings for this game, last day, we saw that the probability distribution of X is given by:

X	$\mathbf{P}(\mathrm{X})$
-1	$5 / 12$
0	$1 / 12$
1	$1 / 2$

Use the value for $\mu=\mathbf{E}(X)$ found above to find the variance and standard deviation of X, that is find $\boldsymbol{\sigma}^{2}(X)$ and $\boldsymbol{\sigma}(X)$.

\mathbf{x}_{i}	\mathbf{p}_{i}	$\mathbf{x}_{i} \cdot \mathbf{p}_{i}$	$\left(\mathbf{x}_{i}-\mu\right)$	$\left(\mathbf{x}_{i}-\mu\right)^{2}$	$\mathbf{p}_{i} \cdot\left(\mathbf{x}_{i}-\mu\right)^{2}$
-1	$5 / 12$	$\frac{-5}{12}$	$\frac{-13}{12}$	$\frac{169}{144}$	$\frac{845}{1728}$
0	$1 / 12$	$\frac{0}{12}$	$\frac{-1}{12}$	$\frac{1}{144}$	$\frac{1}{1728}$
1	$6 / 12$	$\frac{6}{12}$	$\frac{11}{12}$	$\frac{121}{144}$	$\frac{726}{1728}$
		Sum $=\mu=\frac{1}{12}$			Sum $=\sigma^{2}(X)=\frac{1572}{1728} \approx 0.9097222222$

$\sigma \approx 0.9537935952$.

Example

An experiment consists of flipping a coin 4 times and observing the sequence of heads and tails. The random variable X is the number of heads in the observed sequence. Last time we found the following probability distribution for X :

X	$\mathbf{P}(\mathrm{X})$
0	$1 / 16$
1	$4 / 16$
2	$6 / 16$
3	$4 / 16$
4	$1 / 16$

Example

An experiment consists of flipping a coin 4 times and observing the sequence of heads and tails. The random variable X is the number of heads in the observed sequence. Last time we found the following probability distribution for X :

X	$\mathbf{P}(\mathrm{X})$
0	$1 / 16$
1	$4 / 16$
2	$6 / 16$
3	$4 / 16$
4	$1 / 16$

We saw above that the expected value for this random variable is $\mathbf{E}(X)=2$. Find $\boldsymbol{\sigma}^{2}(X)$ and $\boldsymbol{\sigma}(X)$.

x_{i}	p_{i}	$x_{i} \cdot p_{i}$	$\left(x_{i}-\mu\right)$	$\left(x_{i}-\mu\right)^{2}$	$p_{i} \cdot\left(x_{i}-\mu\right)^{2}$
0	$\frac{1}{16}$	$\frac{0}{16}$	-2	4	$\frac{4}{16}$
1	$\frac{4}{16}$	$\frac{4}{16}$	-1	1	$\frac{4}{16}$
2	$\frac{6}{16}$	$\frac{12}{16}$	0	0	$\frac{0}{16}$
3	$\frac{4}{16}$	$\frac{12}{16}$	1	1	$\frac{4}{16}$
4	$\frac{1}{16}$	2	4	$\frac{4}{16}$	

$\sigma=1$.

An extra formula

Today you will use Algebra! (wait for applause to die doun)

An extra formula

Today you will use Algebra! (wait for applause to die down)
Here is another approach to calculating the variance.
Because $\boldsymbol{\sigma}^{2}$ is a sum of terms of the form $p_{i}\left(x_{i}-\mu\right)^{2}$, it is also a sum of terms of the form

$$
p_{i} x_{i}^{2}-2 p_{i} x_{i} \mu+p_{i} \mu^{2}
$$

(Algebra)!

An extra formula

Today you will use Algebra! (wait for applause to die down)
Here is another approach to calculating the variance.
Because $\boldsymbol{\sigma}^{2}$ is a sum of terms of the form $p_{i}\left(x_{i}-\mu\right)^{2}$, it is also a sum of terms of the form

$$
p_{i} x_{i}^{2}-2 p_{i} x_{i} \mu+p_{i} \mu^{2}
$$

(Algebra)!
We can do the sum in a different order:

- First sum the $p_{i} x_{i}^{2}$.
- Then sum the $2 p_{i} x_{i} \mu$.
- Finally sum the $p_{i} \mu^{2}$.

An extra formula

Today you will use Algebra! (wait for applause to die down)
Here is another approach to calculating the variance.
Because $\boldsymbol{\sigma}^{2}$ is a sum of terms of the form $p_{i}\left(x_{i}-\mu\right)^{2}$, it is also a sum of terms of the form

$$
p_{i} x_{i}^{2}-2 p_{i} x_{i} \mu+p_{i} \mu^{2}
$$

(Algebra)!
We can do the sum in a different order:

- First sum the $p_{i} x_{i}^{2}$.
- Then sum the $2 p_{i} x_{i} \mu$.
- Finally sum the $p_{i} \mu^{2}$.

The first sum is just $\mathbf{E}\left(X^{2}\right)$.

- First sum the $p_{i} x_{i}^{2}$.
- The sum the $2 p_{i} x_{i} \mu$.
- Finally sum the $p_{i} \mu^{2}$.

The first sum is just $\mathbf{E}\left(X^{2}\right)$.

- First sum the $p_{i} x_{i}^{2}$.
- The sum the $2 p_{i} x_{i} \mu$.
- Finally sum the $p_{i} \mu^{2}$.

The first sum is just $\mathbf{E}\left(X^{2}\right)$.
The second sum is 2μ times the sum of the $p_{i} x_{i}$. But the sum of the $p_{i} x_{i}$ is $\mathbf{E}(X)=\mu$ so the second sum is $2 \mu^{2}$.

- First sum the $p_{i} x_{i}^{2}$.
- The sum the $2 p_{i} x_{i} \mu$.
- Finally sum the $p_{i} \mu^{2}$.

The first sum is just $\mathbf{E}\left(X^{2}\right)$.
The second sum is 2μ times the sum of the $p_{i} x_{i}$. But the sum of the $p_{i} x_{i}$ is $\mathbf{E}(X)=\mu$ so the second sum is $2 \mu^{2}$.

Since the sum of the probabilities is 1 , the third sum is μ^{2}. Hence

$$
\boldsymbol{\sigma}^{2}(X)=\mathbf{E}\left(X^{2}\right)-\mathbf{E}(X)^{2}
$$

Let us redo the previous example:

Let us redo the previous example:

x_{i}	p_{i}	$x_{i} \cdot p_{i}$	$\left(x_{i}-\mu\right)$	$\left(x_{i}-\mu\right)^{2}$	$p_{i} \cdot\left(x_{i}-\mu\right)^{2}$
0	$\frac{1}{16}$	$\frac{0}{16}$	-2	4	$\frac{4}{16}$
1	$\frac{4}{16}$	$\frac{4}{16}$	-1	1	$\frac{4}{16}$
2	$\frac{6}{16}$	$\frac{12}{16}$	0	0	$\frac{0}{16}$
3	$\frac{4}{16}$	$\frac{12}{16}$	1	1	$\frac{4}{16}$
4	$\frac{1}{16}$	2	4	$\frac{4}{16}$	

$\sigma=1$.

x_{i}	p_{i}	$p_{i} x_{i}$	x_{i}^{2}	$p_{i} x_{i}^{2}$
0	$\frac{1}{16}$	$\frac{0}{16}$	0	$\frac{0}{16}=0$
1	$\frac{4}{16}$	$\frac{4}{16}$	1	$\frac{4 \cdot 1}{16}=\frac{4}{16}$
2	$\frac{6}{16}$	$\frac{12}{16}$	4	$\frac{6 \cdot 4}{16}=\frac{24}{16}$
3	$\frac{4}{16}$	$\frac{12}{16}$	9	$\frac{4 \cdot 9}{16}=\frac{36}{16}$
4	$\frac{1}{16}$	$\frac{4}{16}$	16	$\frac{1 \cdot 16}{16}=\frac{16}{16}$
		Sum $=\mathbf{E}(X)=$		Sum $=\mathbf{E}\left(X^{2}\right)=\frac{80}{16}=5$

x_{i}	p_{i}	$p_{i} x_{i}$	x_{i}^{2}	$p_{i} x_{i}^{2}$
0	$\frac{1}{16}$	$\frac{0}{16}$	0	$\frac{0}{16}=0$
1	$\frac{4}{16}$	$\frac{4}{16}$	1	$\frac{4 \cdot 1}{16}=\frac{4}{16}$
2	$\frac{6}{16}$	$\frac{12}{16}$	4	$\frac{6 \cdot 4}{16}=\frac{24}{16}$
3	$\frac{4}{16}$	$\frac{12}{16}$	9	$\frac{4 \cdot 9}{16}=\frac{36}{16}$
4	$\frac{1}{16}$	$\frac{4}{16}$	16	$\frac{1 \cdot 16}{16}=\frac{16}{16}$
		$\operatorname{Sum}_{\mu=2}=\mathbf{E}(X)=$		
Sum $=\mathbf{E}\left(X^{2}\right)=\frac{80}{16}=5$				

Hence

$$
\boldsymbol{\sigma}^{2}(X)=\mathbf{E}\left(X^{2}\right)-\mathbf{E}(X)^{2}=5-2^{2}=1
$$

