
Learning Goals

1. What is the least squares line?

2. Finding the least squares line in R

3. Interpreting results of a linear regression in R

Topic 3: The Least Squares Line, Linear Regression

Linear Regression Recall the scatterplot of the data for fantasy football points for a set of quarterbacks
in 2013 and 2014 from the last section.

Fitting a line to the data : The Least squares line. Given a set of data points in the xy-plane,
{(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)} such as those shown above, there are many lines that we could
fit to the data to help us make predictions for the future. To find an equation for the line which best fits
the data we use the method of least squares. This line minimizes the squares of the difference between
the y values on the line and the y values for the points in the data. This equation gives us a linear
formula which estimates the relationship between the variable x and the variable y which we can use
for predictions.

Recall that the equation of a line is of the form y = β0 + β1x where β0 and β1 are constants. The
idea is to find values of β0 and β1 so that the sum

SSE = ((y1 − y(x1))
2 + (y2 − y(x2))

2 + · · ·+ (yn − y(xn))2)

is minimal where y(xi) is the value corresponding to xi from the formula y = β0 + β1x and yi is the
value corresponding to xi in the datapoint (xi, yi). (SSE stands for the sum of the squared errors.)

We see from this interactive demonstration on Wolfram Alpha Demonstrations that for some lines
the sum of the squared errors is larger than for others.

Quarterback Example Consider the data for our quarterbacks above. Let xi be the number of
fantasy points scored by quarterback i in 2013 and let yi denote the number of fantasy points scored
by quarterback i is 2014. Lets calculate the sum of the squared error (SSE) for a particular line
y = 150 + (0.5)x.
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points 2013 points 2014 predicted values Errors Squared Errors
xi yi y(xi) = 150 + (0.5)xi yi − y(xi) (yi − y(xi))

2

162 342 231 111 12321
279 336 289.5 46.5 2162.25
256 312 278 34 1156
406 307 353 −46 2116
248 295 274 21 441
348 290 324 −34 1156
239 268 269.5 −1.5 2.25
241 267 270.5 −3.5 12.25
225 266 262.5 3.5 12.25
162 263 231 32 1024
252 258 276 −18 324
276 254 288 −34 1156
194 249 247 2 4
160 244 230 14 196
267 237 283.5 −46.5 2162.25
282 237 291 −54 2916
253 234 276.5 −42.5 1806.25
277 210 288.5 −78.5 6162.25
238 205 269 −64 4096
19 171 159.5 11.5 132.25
158 171 229 −58 3364
38 149 169 −20 400

SE = −225 SSE = 43122.25

From the table above , we see that for the line y = 150 + (0.5)x, the sum of the errors is an unreliable
statistic in measuring how well the line fits the data due to cancellation. We avoid this problem by
squaring the error and use the Sum of Squares of The Error (SSE) to measure how well the line fits the
data. Naturally a smaller SSE will indicate that a line is a better fit for the data.

There is a unique line for which SSE is at a minimum. This line is called the Least Squares Line. The
methodology used to obtain the equation of this line is called the method of least squares.

We can solve for the coefficients β0 and β1 of such a line, for a particular set of data, by using
calculus to find the minimum of the function

SSE = Σ[yi − (β0 + β1xi)]
2,

for the variable β0 and β1.

Definition The least squares line y = β0 + β1x, for a set of data, is the unique line with the following
properties:

1. The sum of errors equals 0; SE = 0

2. The sum of squared errors (SSE) is smaller than that for any other straight line model.
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The values of β0 and β1 for the least squares line are given by the following formulas (where x̄ and
ȳ demote the means of the data sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn} respectively):

β1 =
SSxy

SSxx

, β0 = ȳ − β1x̄

where

SSxy =
∑

(xi − x̄)(yi − ȳ) =
∑

xiyi −
(
∑
xi)(

∑
yi)

n
and

SSxx =
∑

(xi − x̄)2 =
∑

x2i −
(
∑
xi)

2

n
We have

SSE =
∑

(yi − (β0 + β1xi))
2 = SSyy − β1SSxy

where

SSyy =
∑

y2i −
∑

(yi)
2

n
.

Example For the above data, the least squares line is given by y = 177.06 + 0.33x and the sum of the
squared errors for this line is SSE = 36487.3. This is less than the sum of the squared errors for the line
shown above, in fact it is the minimum such sum possible for any line that we might fit to the data.

We could use this line to estimate the fantasy points that a quarterback will score in 2020 given the
number of points he scored in 2019. For example if a quarterback scored 250 points in fantasy football in
2019, we might expect the number of points he scores in 2020 to be roughly 177.06+0.33(250) ≈ 259.56.

Calculating the Least Squares Line in R We can use R to calculate the coefficients of the least
squares line with a single command lm() as shown below:
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How well does the line fit the data? We can always fit a least squares line to a set of data
using the lm() (which stands for Linear Model) command. However, as we saw when exploring the
correlation, a linear model for a set of data is not always appropriate. Therefore, we need some measure
of how well the line we get, by applying the lm() function to the data, fits the data. We can find some
measure of how well the model fits the data by looking at the summary (of the statistics related to the
model) of the model we created and called fit:

p-values Whenever we run a regression, we should always check the p-values next to the independent
variables (in this case the intercept and Y2013). Each independent variable has a p-value between 0
and 1. Roughly it gives the probability that that variable (in the presence of all other variables in the
model) does not enhance our predictive ability. An independent variable with a p-value less than 0.05
is considered a useful predictor of the dependent variable (in this case Y2014). We see that R makes it
easy to identify significant variables with p-values with the use of asterisks. In our model we have that
the variable Y2013 and the intercept are both significant in our model.

The Coefficient of Determination R2 The multiple R2 statistic also gives us information about
the accuracy of our model for prediction. It is called the coefficient of determination and is the square
of the correlation coefficient r = 0.5742875 that we found between the variables Y 2013, Y 2014 in the
previous section. It can also be calculated as

R2 =
SSyy − SSE

SSyy

and gives a measure of the total sampling variability that is explained by the linear relationship
between x and y. The value of R2 = 0.3298 in the example above means that the sum of squares of the

deviations for this example are reduced by about 33% when we use the least squares line for prediction
instead of the line y = ȳ, since

SSyy =
∑

(yi − ȳ)2 and SSE =
∑

(yi − ŷ)2.

In other words, 33% of the error is explained away by using the least squares line for prediction. There
are various underlying statistical conditions on the distribution of errors etc... that one needs to check
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in order to use the linear model. You will learn about these conditions in more advanced courses. We
see that our software R actually adjusts this statistic to take into account some of the abnormalities
of the data. After this adjustment, we see that our data most like explains a little less (29.6%) of the
error.

Plotting The Line With our scatterplot We add the line into the scatterplot with the command
abline(fit).

Example Lets return to our imported data BBdata and find least squares lines that best fit the data for
some team statistics and the Overall Win-Loss Percentage OWL.P We had the following scatterplots of
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the paired data OWL.P vs. eFG.P and OWL.P vs. Th.Par resp.

plot(BBdata$eFG.P, BBdata$OWL.P, main="Scatterplot",
xlab="Effective Field Goal Percentage ", ylab="Overall Win-Loss Percentage ")
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cor(BBdata$eFG.P, BBdata$OWL.P)

## [1] 0.6002358
plot(BBdata$Th.Par, BBdata$OWL.P, main="Scatterplot",

xlab="Three Point Attemp Rate", ylab="Overall Win-Loss Percentage")
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cor(BBdata$Th.Par, BBdata$OWL.P)

## [1] 0.004512129
cor(BBdata$eFG.P, BBdata$TOV.P)

## [1] -0.2997652
smallBBdata<-BBdata[,c("eFG.P","TOV.P", "ORB.P","FTPFGA")]
corrs<-cor(smallBBdata)
corrs<-round(corrs,2)
corrs

## eFG.P TOV.P ORB.P FTPFGA
## eFG.P 1.00 -0.30 -0.01 0.12
## TOV.P -0.30 1.00 0.01 -0.02
## ORB.P -0.01 0.01 1.00 0.13
## FTPFGA 0.12 -0.02 0.13 1.00

“‘

As with a lot of statistical functions, you can calculate the correlation of two vectors (named X and Y) with
a single command in R cor(X,Y):
cor(Y2013,Y2014)

## [1] 0.5742875

2

(a) Find the Least squares line for Win-Loss Percentage OWL.P (dependent variable) and Effective Field
Goal Percentage eFG.P (independent variable) for the teams in our file BBdata using the basic
command lm(y x).

(b) Print a summary of the model in R, find the p-values of the coefficients and the value of the coefficient
of determination.

(c) Assess the validity of the model by taking into account the p-values and the amount of the error
explained by the model.

(d) Find the Least squares line for Win-Loss Percentage OWL.P (dependent variable) and 3-Point At-
tempt Rate Th.Par f(independent variable) for the teams in our file BBdata using the basic command
lm(y x).

(e) Print a summary of the model in R, find the p-values of the coefficients and the value of the coefficient
of determination.

(f) Assess the validity of the model by taking into account the p-values and the amount of the error
explained by the model.
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The results for parts (a)-(c) are as follows:

(a) We see that the best fit line for the data is

OWL.P = 3.445eFG.P− 1.231

(b) We see that both coefficients are significant and should be included in the model. The adjusted
coefficient of determination is R2 = 0.3585 which means that roughly 36% of the error is explained by
the model.

(c) Clearly other factors influence the overall win-loss percentage but about 36% of the variability in
the win-loss percentage is explained by this model. Roughly an increase of 1 unit in effective field goal
percentage for a team leads to an increase of 3.4 units in overall win-loss percentage. For example an
increase of 0.1 if eFG.P roughly leads to an increase of .34 in OWL.P.
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The results for parts (d)-(e) are shown below:

(d) The best fit line for the data is

OWL.P = 3.445Th.Par− 1.231

(e-f) We see that the 3-Point Attempt Rate Th.Par is not a significant factor in explaining overall
win-loss percentage. The p-value is 0.933, which means that there is roughly a 93% chance that this
statistic does not enhance our predictive ability. As we might have expected from our calculation
of the correlation coefficient in the last section, the coefficient of determination is very small here, it
is approximately 0.00002, which says that if we just used the average overall win-loss percentage to
predict the overall win-loss percentage for all teams, our predictions would be essentially as good as the
predictions we would get by using this least squares line for prediction, since it explains only 0.002% of
the error we get by doing so. Therefor our conclusion is that this is not a good model for predicting
overall win-loss percentage and the variable Th.Par should not be used for such predictions.

R commands

1. fit<-lm(Y X) : creates best fit linear model(line)
for data {(x1, y1), (x2, y2), (x3, y3), . . . , (xn, yn)},
where X < −c(x1, . . . , xn) and Y < −c(y1, . . . , yn).
To print details type fit, the name of your model.

2. summary(fit) : shows the p-values and R2 stats as-
sociated to your model called fit.

3. plot(X,Y) followed by abline(fit): shows the scat-
terplot and best fit line for the data.
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