
Variable Types and Basics of Subsetting and Dealing with Data

We already have considerable experience in dealing with univariate and milti-
variate data. In this section, we pull out some general principles associated to
skills that you have already acquired.

We will use the data set shown below, available in combine1516nd.csv, as our
running example. It shows the data from the NFL combine for all players from
Notre Dame who participated in the combine and played in the AFL or NFL
from years 2015 and 2016.

> options(width=80)

> combine1516nd<-read.csv("combine1516nd.csv",header = TRUE)

> combine1516nd

Year Player Pos Height Wt FortyYD Vertical BenchReps BroadJump

1 2016 Sheldon Day DT 73 293 5.07 30.0 21 102

2 2016 Keivarae Russell CB 71 192 4.49 NA 17 NA

3 2016 C.J. Prosise RB 72 220 4.48 35.5 NA 121

4 2016 Will Fuller WR 72 186 4.32 33.5 10 126

5 2016 Ronnie Stanley OT 78 312 5.20 28.5 NA NA

6 2015 Kyle Brindza K 73 236 5.17 NA 14 NA

7 2015 Ben Koyack TE 77 255 4.79 NA NA NA

ThreeCone Shuttle Draftedby

1 7.44 4.50 Jacksonville Jaguars

2 NA NA Kansas City Chiefs

3 NA NA Seattle Seahawks

4 6.93 4.27 Houston Texans

5 8.03 4.90 Baltimore Ravens

6 NA NA <NA>

7 NA NA Jacksonville Jaguars

Common Notation

• Case: A case is one of several items of interest, often members of a
population of people, games, days, depending on the nature of the data.
It usually corresponds to a single row of the data. In our example above,
each player is a case.

• Variable This is a measurement or characteristic of a case (it varies from
case to case). The data shows shows several variables, Name, Position,

Height, Weight, Speed for the Forty Yard Dash, etc....

Data Types: There are several ways to categorize data. We will refer to the
following data types:

• Factor Data Some variables record categories which can be used to group
data. We can use factors to store these variables in R and this will help

1

us summarize the data by category if we need to. In the example above
the player’s position should be regarded as a factor variable. We can use
factor variables to group data and make numerical summaries of the group
data.

• Character data Some data used to characterize a case may not be suit-
able to categorize the data, for example player name or id, numbers or
telephone numbers. Character data and Factor data are both descrip-
tive data types which are considered non-numeric in nature. (for example
it would not make sense to calculate the average of student id numbers).

• Discrete numerical Data This is data that is numerical but the possible
values are distinct from each other and can be“listed”on a possibly infinite
list. BenchReps is a discrete variable, since the number recorded is always
a whole number. In the example above, height could be measured on a
continuum, however, they have rounded off to the nearest inch so it is
discrete.

• Continuous Data: Continuous data is numerical data which could
concieveably come from a continuum of values. Theoretically the variable
could take on any value in some interval of real numbers. We see that
the speed for the FortyYD, ThreeCone and Shuttle are all continuous.
Height, Weight and Broadjump are theoretically continuous, however
since they have rounded the data to whole numbers they are recorded as
discrete data.

• Data and Time Data: This data can be presented in many different
ways and on different scales. It can be considered as a measurement but
sometimes it is also descriptive in nature. Some software automatically
processes anything remotely resembling data and time data in some de-
fault way when the data is imported and one must be careful to take note
of this.

• Logical Data takes the values TRUE and FALSE. It can be trated as numer-
ical data in the sense that if you apply a function such as sum(), R will
automatically convert the TRUE values to 1 and the FALSE values to 0.

Word of Warning on Character and Factor Variables When R imports
a csv file, it imports Character variables as factor variables. It is important to
convert the character variables from factor variables if you need to work with
them. To check a variable type you can use the class() function and you can
convert a variable to another class, as shown below

> class(combine1516nd$Player)

2

[1] "factor"

> #to convert to a character variable

> combine1516nd$Player<-as.character(combine1516nd$Player)

> class(combine1516nd$Player)

[1] "character"

Coercion We saw before that we can define vectors for two different types of
data, character data and numerical data, however, we cannot mix data types
in a single vector. If there is mixed data in the vector, R will automatocally
coerce all of the data to the most basic type, usually character data.

> v<-c("2", 4,1,5)

> v

[1] "2" "4" "1" "5"

> class(v)

[1] "character"

Note also that when importing data R sometimes converts numerical data to
character data. We can check the data type of all variables in an imported file
with using the class() function:

> sapply(combine1516nd,class)

Year Player Pos Height Wt FortyYD

"integer" "character" "factor" "integer" "integer" "numeric"

Vertical BenchReps BroadJump ThreeCone Shuttle Draftedby

"numeric" "integer" "integer" "numeric" "numeric" "factor"

Missing Values: One should always consider what to do with missing values
when dealing with data, sometimes we need to replace them with 0 or as in the
case with our modified Borda count, we needed to replace them by a number.
Sometimes we do not wish to include them at all when evaluating a reductive
function such as the sum or the mean, since replacing them with 0 will distort
our summary. Let’s see what happens if I want to calculate the means of the
numerical variables in columns 4-11.

> options(width=80)

> apply(combine1516nd[,4:11], 2,mean)

3

Height Wt FortyYD Vertical BenchReps BroadJump ThreeCone

73.714286 242.000000 4.788571 NA NA NA NA

Shuttle

NA

We see that if there is a value of NA in a column, we cannot calculate the
mean. R represents missing values by NA (meaning not available). If we create
a numerical vector with missing data, R will give us an error message and will
not create the vector. On the other hand R will accept the vector with the
missing data replaced by NA(not available). Be very careful to use NA and not
"NA" for missing data. This indicates that the value may exist, but is not in
the data set or it may not exist.

When we import data, we can have blank spaces in character vectors and
if we convert character data to numerical data (with as.numeric, R will auto-
maticallly replace empty spaces to NA values

> #B<-c(21,17,,10, ,14,)

> #You get an error message for the above command

> B<-c(21,17,NA,10,NA,14,NA)

> B

[1] 21 17 NA 10 NA 14 NA

> class(B)

[1] "numeric"

> BR<-c("21","17","" ,"10","" ,"14","")

> BR

[1] "21" "17" "" "10" "" "14" ""

> class(BR)

[1] "character"

> BR<-as.numeric(BR)

> BR

[1] 21 17 NA 10 NA 14 NA

> class(BR)

[1] "numeric"

4

If we try to apply a function such as sum() or mean() to a data set with missing
values, R will return a value NA since it cannot compute the function because
of the missing values.

> sum(BR)

[1] NA

Many such functions in R are defined with an argument that allows you to
specify what to do with missing values. For sum() and mean() you can have R
remove missing values using na.rm.

> options(width=80)

> mean(BR, na.rm=TRUE)

[1] 15.5

> apply(combine1516nd[,4:11], 2,mean, na.rm=TRUE)

Height Wt FortyYD Vertical BenchReps BroadJump ThreeCone

73.714286 242.000000 4.788571 31.875000 15.500000 116.333333 7.466667

Shuttle

4.556667

NULL is a value reserved for a situation where some requested action is unde-
fined or unavailable. For example if I create a function with no formula:

> f<-function(x){}

> f(BR)

NULL

NaN (not a number) will be returned when the calculation leads to a number
that is not defined. ±Inf will be returned if the result of a calculation is not
defined but is ±∞.

> sqrt(-2)

[1] NaN

> 0/0

[1] NaN

> 1/0

5

[1] Inf

> -1/0

[1] -Inf

Assignment Functions The names() function can be used in 2 ways. it can
be used to set or assign names to the variiables in a data set and it can be used
to get names of the variables in a data set.

> names(combine1516nd)

[1] "Year" "Player" "Pos" "Height" "Wt" "FortyYD"

[7] "Vertical" "BenchReps" "BroadJump" "ThreeCone" "Shuttle" "Draftedby"

> a<-c(1,2,3)

> b<-c(4,5,6)

> d<-c(7,8,9)

> df<-data.frame(a,b,d)

> df

a b d

1 1 4 7

2 2 5 8

3 3 6 9

> names(df)<-c("x","y","z")

> df

x y z

1 1 4 7

2 2 5 8

3 3 6 9

There are a number of functions in R with this double feature. Note the set
feature is characterized by the format fun(x)<-value whereas the get feature
looks like fun(x).

Indexing: To access the k th item in a vector x, we use square brackets x[k].
To access several items simultaneously, we use a vector of indices and to access
all but a specified set of indices, we use the - notation:

> H<-c(1,2,3,4,5,6,7,8,9,10)

> H[4]

6

[1] 4

> H[c(2,4,5)]

[1] 2 4 5

> H[-4]

[1] 1 2 3 5 6 7 8 9 10

> H[-c(2,4,5)]

[1] 1 3 6 7 8 9 10

> H[10]

[1] 10

> H[]

[1] 1 2 3 4 5 6 7 8 9 10

If we do not specify an index, we get the full vector.

Subsets of a data frame To get the (i, j) entry of a data frame df (in row i
and column j), we use df[i,j], to look at the ith row, we use df[i,] and to
look at the jth column, we use df[,j]

> combine1516nd[1,2]

[1] "Sheldon Day"

> combine1516nd[1,]

Year Player Pos Height Wt FortyYD Vertical BenchReps BroadJump

1 2016 Sheldon Day DT 73 293 5.07 30 21 102

ThreeCone Shuttle Draftedby

1 7.44 4.5 Jacksonville Jaguars

> combine1516nd[,2]

[1] "Sheldon Day" "Keivarae Russell" "C.J. Prosise" "Will Fuller"

[5] "Ronnie Stanley" "Kyle Brindza" "Ben Koyack"

To get columns 2,4, and 6, we use v<-c(2,4,6) and df[,v]. Likewise to get
rows 2,4, and 6, we use df[v,].

7

> options(width=60)

> v<-c(2,4,6)

> combine1516nd[,v]

Player Height FortyYD

1 Sheldon Day 73 5.07

2 Keivarae Russell 71 4.49

3 C.J. Prosise 72 4.48

4 Will Fuller 72 4.32

5 Ronnie Stanley 78 5.20

6 Kyle Brindza 73 5.17

7 Ben Koyack 77 4.79

> combine1516nd[v,]

Year Player Pos Height Wt FortyYD Vertical

2 2016 Keivarae Russell CB 71 192 4.49 NA

4 2016 Will Fuller WR 72 186 4.32 33.5

6 2015 Kyle Brindza K 73 236 5.17 NA

BenchReps BroadJump ThreeCone Shuttle Draftedby

2 17 NA NA NA Kansas City Chiefs

4 10 126 6.93 4.27 Houston Texans

6 14 NA NA NA <NA>

We can also call out columns and rows by name; To look at the players’ names
and Height and weight, we could us

> combine1516nd[,c("Player","Height","Wt")]

Player Height Wt

1 Sheldon Day 73 293

2 Keivarae Russell 71 192

3 C.J. Prosise 72 220

4 Will Fuller 72 186

5 Ronnie Stanley 78 312

6 Kyle Brindza 73 236

7 Ben Koyack 77 255

Using Logical statements to subset We can also pick out the cases which
satisfy cretain conditions with logical statements. I have attached 3 pages of a
book entitled ”A First Course in Statistical Programming with R” by W. Braun
and D. Murdoch. Which explains a bit about Boolean Algebra and Logical
Operations in R. Recall our table of operators

8

For example, if I want to make a new data frame conatining only the data for
players with height above 75 in, I use the following statements top subset the
data:

> options(width=80)

> c1<-combine1516nd[combine1516nd$Height>75,]

> c1

Year Player Pos Height Wt FortyYD Vertical BenchReps BroadJump

5 2016 Ronnie Stanley OT 78 312 5.20 28.5 NA NA

7 2015 Ben Koyack TE 77 255 4.79 NA NA NA

ThreeCone Shuttle Draftedby

5 8.03 4.9 Baltimore Ravens

7 NA NA Jacksonville Jaguars

Players with height above 75 in and time for the forty yard dash < 5sec is given
by

> options(width=60)

> c2<-combine1516nd[(combine1516nd$Height>75)&(combine1516nd$FortyYD<5),]

> c2

9

Year Player Pos Height Wt FortyYD Vertical BenchReps

7 2015 Ben Koyack TE 77 255 4.79 NA NA

BroadJump ThreeCone Shuttle Draftedby

7 NA NA NA Jacksonville Jaguars

Players with height above 75 in or time for the forty yard dash < 5sec is given
by

> options(width=60)

> c2<-combine1516nd[(combine1516nd$Height>75)|(combine1516nd$FortyYD<5),]

> c2

Year Player Pos Height Wt FortyYD Vertical

2 2016 Keivarae Russell CB 71 192 4.49 NA

3 2016 C.J. Prosise RB 72 220 4.48 35.5

4 2016 Will Fuller WR 72 186 4.32 33.5

5 2016 Ronnie Stanley OT 78 312 5.20 28.5

7 2015 Ben Koyack TE 77 255 4.79 NA

BenchReps BroadJump ThreeCone Shuttle

2 17 NA NA NA

3 NA 121 NA NA

4 10 126 6.93 4.27

5 NA NA 8.03 4.90

7 NA NA NA NA

Draftedby

2 Kansas City Chiefs

3 Seattle Seahawks

4 Houston Texans

5 Baltimore Ravens

7 Jacksonville Jaguars

Assigning new values to parts of a vector: We can assign the value m to
the kth position in a vector x using the command x[k]<-m.

> x<-c(3, 2, 1, 5)

> x[3]<-14

> x

[1] 3 2 14 5

We can assign values to multiple positions simultaneously with vectors of in-
dices:

> x[c(1,4)]<-c(20,17)

> x

10

[1] 20 2 14 17

We can also reduce the vector x to a subset of itself by redefining it

> x<-x[5:7]

> x

[1] NA NA NA

We set several values of a vector equal to a single value by just specifying the
single value. (When the right hand side ahs less values than needed R recycles
them):

> y<-1:10

> y

[1] 1 2 3 4 5 6 7 8 9 10

> y[1:5]<-1

> y

[1] 1 1 1 1 1 6 7 8 9 10

> y[6:9]<-c(2,4)

> y

[1] 1 1 1 1 1 2 4 2 4 10

> y[6:10]<-c(3,5)

> y

[1] 1 1 1 1 1 3 5 3 5 3

As we saw when using the modified Borda count, we can replace the missing
values in a vector with preferred values, bu subsetting the vector with a logical
statement.

> z<-c(1,NA,2,NA,3,4,5)

> z

[1] 1 NA 2 NA 3 4 5

> is.na(z)

[1] FALSE TRUE FALSE TRUE FALSE FALSE FALSE

11

> z[is.na(z)]

[1] NA NA

> z[is.na(z)]<-0

> z

[1] 1 0 2 0 3 4 5

As you can see, R creates a logical vector with the command is.na(z) and
z[is.na(z)] gives the positions of the TRUE values in that vector. The com-
mand z[is.na(z)]<-0 replaces the values in the positions indicated by the
vector z[is.na(z)] by 0. We juat need the last command here to replace
the NA values, but we can understand what is going opn behind the scenes by
examining the vectors created in each step.

Categorical Data Types: Character vs Factor data.
Character Data: We already know how to create character vectors:

> v<-c("Math", "is", "awesome")

> v

[1] "Math" "is" "awesome"

Factors: Factors are used to categorize data. we can create a factor with the
factor() function. For example the following factor categorizes the subject.

> Name<-c("Tom","Peyton","Ely","Jerry","Randy")

> class(Name)

[1] "character"

> Pos<-factor(c("QB","QB","QB","WR","WR"))

> class(Pos)

[1] "factor"

> Pos

[1] QB QB QB WR WR

Levels: QB WR

> FortyYD<-c(4.9,5.1,5.2,4.9,4.1)

> class(FortyYD)

[1] "numeric"

12

> Vertical<-c(30,35.5,32.1,39.1,33.1)

> class(Vertical)

[1] "numeric"

> dreamteam<-data.frame(Name,Pos,FortyYD,Vertical)

> dreamteam

Name Pos FortyYD Vertical

1 Tom QB 4.9 30.0

2 Peyton QB 5.1 35.5

3 Ely QB 5.2 32.1

4 Jerry WR 4.9 39.1

5 Randy WR 4.1 33.1

We see that when we call a factor vector, we get the vector along with a list
of the levels of the factor vector. The levels are just the possible values of
the factor. We can get a list of the levels of a factor vector with the function
levels().

> levels(Pos)

[1] "QB" "WR"

We cannot change a value in a factor vector unless we are changing it to an
already existing level. If we try, R will insert a value of NA. Suppose we want to
switch Tom to Running Back position (RB).

> Pos[1]<-"RB"

> Pos

[1] <NA> QB QB WR WR

Levels: QB WR

In order to make the above change, we must first add a level. (We first rectify
the damage we have done :))

> #switch back to original Pos vector

> Pos<-factor(c("QB","QB","QB","WR","WR"))

> class(Pos)

[1] "factor"

> #Add a new level and switch Tomn's playing Position

> levels(Pos)<-c(levels(Pos),"RB")

> levels(Pos)

13

[1] "QB" "WR" "RB"

> Pos

[1] QB QB QB WR WR

Levels: QB WR RB

> Pos[1]<-"RB"

> Pos

[1] RB QB QB WR WR

Levels: QB WR RB

To redefine the levels(switch the labels to new ones) we can specify the new levels
as a vector with the same length as the old vector and ordered appropriately
so that the position of the new levels match the position of their predecessor.
Suppose we want to use the labels "QBack" and "WideR" instead of "QB" and
"WR", we redefine the labels as follows:

> #switch back to original Pos vector

> Pos<-factor(c("QB","QB","QB","WR","WR"))

> class(Pos)

[1] "factor"

> levels(Pos)

[1] "QB" "WR"

> #Switch names in the levels vector

> levels(Pos)<-c("QBack","WideR")

> Pos

[1] QBack QBack QBack WideR WideR

Levels: QBack WideR

> levels(Pos)

[1] "QBack" "WideR"

The tapply function. One of the nice things about factors is that you can
apply functions by factor. For example, if I want to get a list of the means of
the variable FortyYD by position in the data frame dreamteam above, I can use
the tapply function from the apply group.

14

> r1<-with(dreamteam, tapply(FortyYD, Pos, mean))

> r1

QB WR

5.066667 4.500000

The with command above, saves you the bother of writing the name of the
data frame each time you call one of the variables. You can also use tapply as
follows:

> tapply(dreamteam$Vertical,dreamteam$Pos,mean)

QB WR

32.53333 36.10000

Logical Data: We have already considered logical data which takes either of
two values TRUE or FALSE. Logical data is produced by a number of is functions
and comaprison operators.

> is.numeric("Name")

[1] FALSE

> is.na(4)

[1] FALSE

> 3<4

[1] TRUE

> "two"==2

[1] FALSE

> sqrt(3)*sqrt(3)==3

[1] FALSE

> all.equal(sqrt(3)*sqrt(3),3)

[1] TRUE

We can also check which entries in a vector satisfy a logical statement

15

> Wt<-combine1516nd$Wt

> Wt>200

[1] TRUE FALSE TRUE FALSE TRUE TRUE TRUE

> Wt==220

[1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE

> Wt>200&Wt<250

[1] FALSE FALSE TRUE FALSE FALSE TRUE FALSE

The functions any, all, which, and %in%. The functions any and all return
whether any or all of the values in a vector satisfy a condition.

> any(Wt>250)

[1] TRUE

> all(Wt>250)

[1] FALSE

The which function tells us which indices satisfy the condition

> which(Wt<250&Wt>200)

[1] 3 6

> combine1516nd$Player[c(3,6)]

[1] "C.J. Prosise" "Kyle Brindza"

> #we could just do all of this with one command

> combine1516nd$Player[which(combine1516nd$Wt<250&combine1516nd$Wt>200)]

[1] "C.J. Prosise" "Kyle Brindza"

> #or something very compact:

> with(combine1516nd,Player[which(Wt<250&Wt>200)])

[1] "C.J. Prosise" "Kyle Brindza"

To check if a value is in a vector, we use %in%, any or match (which works for
more than one value).

16

> 210 %in% Wt

[1] FALSE

> any(210==Wt)

[1] FALSE

> match(c(293,236),Wt)

[1] 1 6

We can apply numerical functions to logical vectors. In this case R coerces the
logical vector to a numerical vector with 1 replacing TRUE and 0 replacing FALSE.
This is especially useful if you wish to count the number of entries in a vector
that satisfy some condition, we can sum a logical vector. For example to check
how many players in our data set have a weight between 200 and 250 pounds
we use

> sum(Wt<250&Wt>200)

[1] 2

As we saw before, we can use logical vectors to subset a data frame or a vector.

> Wt[Wt<mean(Wt)]

[1] 192 220 186 236

> combine1516nd[combine1516nd$Wt<mean(combine1516nd$Wt),]

Year Player Pos Height Wt FortyYD Vertical

2 2016 Keivarae Russell CB 71 192 4.49 NA

3 2016 C.J. Prosise RB 72 220 4.48 35.5

4 2016 Will Fuller WR 72 186 4.32 33.5

6 2015 Kyle Brindza K 73 236 5.17 NA

BenchReps BroadJump ThreeCone Shuttle Draftedby

2 17 NA NA NA Kansas City Chiefs

3 NA 121 NA NA Seattle Seahawks

4 10 126 6.93 4.27 Houston Texans

6 14 NA NA NA <NA>

As shown above, we can also use a logical vector to take out NA values.

> BJ<-combine1516nd$BroadJump

> BJ

17

[1] 102 NA 121 126 NA NA NA

> is.na(BJ)

[1] FALSE TRUE FALSE FALSE TRUE TRUE TRUE

> BJ1<-BJ[!is.na(BJ)]

> BJ1

[1] 102 121 126

> mean(BJ1)

[1] 116.3333

We can also use one variable to subset another.

> BJ<-combine1516nd$BroadJump

> BJ

[1] 102 NA 121 126 NA NA NA

> Wt<-combine1516nd$Wt

> Wt

[1] 293 192 220 186 312 236 255

> BJ[Wt>200]

[1] 102 121 NA NA NA

Example It is common, when making a model with a regression or other-
wise, to split your data in half, and use one half to make the model and the
other to test it. If your data is spreadf throughout a season, you may not wish
to split the data into the first half and second half off the season, since the game
may be played differently as the season progresses. In this case, it is common
to take random samples or to take every second case(even numbered cases)
for the model data (run) and the rest (odd numbered cases) for the test data
(test).

For example to create a data set run with the even numbered cases of our
data set combine1516nd , and a data set test containing the odd numbered
cases, we can do the following:

> v<-1:nrow(combine1516nd)

> v

18

[1] 1 2 3 4 5 6 7

> v1<-v%%2==0

> v2<-v%%2!=0

> v1

[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE

> v2

[1] TRUE FALSE TRUE FALSE TRUE FALSE TRUE

> run<-combine1516nd[v1,]

> test<-combine1516nd[v2,]

> run

Year Player Pos Height Wt FortyYD Vertical

2 2016 Keivarae Russell CB 71 192 4.49 NA

4 2016 Will Fuller WR 72 186 4.32 33.5

6 2015 Kyle Brindza K 73 236 5.17 NA

BenchReps BroadJump ThreeCone Shuttle Draftedby

2 17 NA NA NA Kansas City Chiefs

4 10 126 6.93 4.27 Houston Texans

6 14 NA NA NA <NA>

> test

Year Player Pos Height Wt FortyYD Vertical

1 2016 Sheldon Day DT 73 293 5.07 30.0

3 2016 C.J. Prosise RB 72 220 4.48 35.5

5 2016 Ronnie Stanley OT 78 312 5.20 28.5

7 2015 Ben Koyack TE 77 255 4.79 NA

BenchReps BroadJump ThreeCone Shuttle

1 21 102 7.44 4.5

3 NA 121 NA NA

5 NA NA 8.03 4.9

7 NA NA NA NA

Draftedby

1 Jacksonville Jaguars

3 Seattle Seahawks

5 Baltimore Ravens

7 Jacksonville Jaguars

19

34 INTRODUCTION TO THE R LANGUAGE

(d) Multiply each observation by −2, and assign the result to srm2.
Find the mean, median, range, and variance of srm2. How do the
statistics change now?

(e) Plot a histogram of the solar.radiation, sr10, and srm2.
2 Calculate

∑15
n=1 min(2n, n3). [Hint: the min() function will give the

wrong answer.]
3 Calculate

∑15
n=1 max(2n, n3).

2.7 Logical vectors and relational operators

We have used the c() function to put numeric vectors together as well
as character vectors. R also supports logical vectors. These contain two
different elements: TRUE and FALSE, as well as NA for missing.

2.7.1 Boolean algebra
To understand how R handles TRUE and FALSE, we need to understand a
little Boolean algebra. The idea of Boolean algebra is to formalize a math-
ematical approach to logic.

Logic deals with statements that are either true or false. We represent
each statement by a letter or variable, e.g. A is the statement that the sky
is clear, and B is the statement that it is raining. Depending on the weather
where you are, those two statements may both be true (there is a “sun-
shower”), A may be true and B false (the usual clear day), A false and B
true (the usual rainy day), or both may be false (a cloudy but dry day).

Boolean algebra tells us how to evaluate the truth of compound state-
ments. For example, “A and B” is the statement that it is both clear and
raining. This statement is true only during a sunshower. “A or B” says that
it is clear or it is raining, or both: anything but the cloudy dry day. This is
sometimes called an inclusive or, to distinguish it from the exclusive or “A
xor B”, which says that it is either clear or raining, but not both. There is
also the “not A” statement, which says that it is not clear.

There is a very important relation between Boolean algebra and set the-
ory. If we interpret A and B as sets, then we can think of “A and B” as the
set of elements which are in A and are in B, i.e. the intersection A ∩ B. Sim-
ilarly “A or B” can be interpreted as the set of elements that are in A or are
in B, i.e. the union A ∪ B. Finally, “not A” is the complement of A, i.e. Ac.

Because there are only two possible values (true and false), we can
record all Boolean operations in a table. On the first line of Table 2.1 we
list the basic Boolean expressions, on the second line the equivalent way to
code them in R, and in the body of the table the results of the operations.

2.7.2 Logical operations in R
One of the basic types of vector in R holds logical values. For example, a
logical vector may be constructed as

a <- c(TRUE, FALSE, FALSE, TRUE)

, ,

20

2 .7 LOGICAL VECTORS AND RELATIONAL OPERATORS 35

Table 2.1 Truth table for Boolean operations

Boolean A B not A not B A and B A or B
R A B !A !B A & B A | B

TRUE TRUE FALSE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE TRUE
FALSE TRUE TRUE FALSE FALSE TRUE
FALSE FALSE TRUE TRUE FALSE FALSE

The result is a vector of four logical values. Logical vectors may be
used as indices:

b <- c(13, 7, 8, 2)
b[a]

[1] 13 2

The elements of b corresponding to TRUE are selected.
If we attempt arithmetic on a logical vector, e.g.

sum(a)

[1] 2

then the operations are performed after converting FALSE to 0 and TRUE
to 1, so by summing we count how many occurrences of TRUE there are in
the vector.

There are two versions of the Boolean operators. The usual versions are
&, |, and !, as listed in the previous section. These are all vectorized, so
we see, for example,

!a

[1] FALSE TRUE TRUE FALSE

If we attempt logical operations on a numerical vector, 0 is taken to be
FALSE, and any non-zero value is taken to be TRUE:

a & (b - 2)

[1] TRUE FALSE FALSE FALSE

The operators && and || are similar to & and |, but behave differently
in two respects. First, they are not vectorized: only one calculation is done.
Secondly, they are guaranteed to be evaluated from left to right, with the
right-hand operand evaluated only if necessary. For example, if A is FALSE,
then A && B will be FALSE regardless of the value of B, so B needn’t
be evaluated. This can save time if evaluating B would be very slow, and
may make calculations easier, for example if evaluating B would cause an
error when A was FALSE. This behavior is sometimes called short-circuit
evaluation.

, ,

21

36 INTRODUCTION TO THE R LANGUAGE

2.7.3 Relational operators
It is often necessary to test relations when programming. R allows testing
of equality and inequality relations using the relational operators: <, >, ==,
>=, <=, and !=.4 Some simple examples follow:

4 Be careful with tests of equality.
Because R works with only a limited
number of decimal places rounding error
can accumulate, and you may find
surprising results, such as 49 *
(4 / 49) not being equal to 4.

threeM <- c(3, 6, 9)
threeM > 4 # which elements are greater than 4

[1] FALSE TRUE TRUE

threeM == 4 # which elements are exactly equal to 4

[1] FALSE FALSE FALSE

threeM >= 4 # which elements are greater than or equal to 4

[1] FALSE TRUE TRUE

threeM != 4 # which elements are not equal to 4

[1] TRUE TRUE TRUE

threeM[threeM > 4] # elements of threeM which are greater than 4

[1] 6 9

four68 <- c(4, 6, 8)
four68 > threeM # four68 elements exceed corresponding threeM elements

[1] TRUE FALSE FALSE

four68[threeM < four68] # print them

[1] 4

Exercises
1 Use R to identify the elements of the sequence {21, 22, . . . , 215} that

exceed the corresponding elements of the sequence {13, 23, . . . , 153}.
2 More complicated expressions can be constructed from the basic
Boolean operations. Write out the truth table for the xor operator, and
show how to write it in terms of and, or, and not.

3 Venn diagrams can be used to illustrate set unions and intersections.
Draw Venn diagrams that correspond to the and, or, not, and xor opera-
tions.

4 DeMorgan’s laws in R notation are !(A & B) == (!A) | (!B)
and !(A | B) == (!A) & (!B). Write these out in English using
the A and B statements above, and use truth tables to confirm each
equality.

5 Evaluation of a square root is achieved using the sqrt() function,
but a warning will be issued when the argument is negative. Consider
the following code which is designed to test whether a given value is

, ,

22

