
Topic 16 Numerical and Graphical Summaries of Data

It is difficult to get an overall picture of a large set of observations by simply
looking at the list of numbers. It is good to organize the data in a picture or to
summarize the data with sample statistics in order to get an overall picture. In
general it helps to have some estimate of central tendency for univariate data
and a measure of how spread out the data is. We also like to see the shape of
the data, whether it is symmetric around the center or skewed.

In this section we will use three data sets; a larger set(than in the previous
lecture) from the NFL combine for Notre Dame Players who later played Pro-
fessional Football stored in CombineND.csv, a data set with points per minute
per game for Steven Curry and Jeremy Lin for the 2015 2016 season PPM.csv,
and a data set containing data on all NFL Players for the year 2014 stored in
NFL.csv.

You should Load all three data sets

> CombineND<-read.csv("combineND.csv",header = TRUE)

> PPM<-read.csv("PPM.csv",header = TRUE)

> NFL<-read.csv("NFL.csv",header = TRUE)

Measure of center the most common measures of center are the mean and
the median.

The Sample Mean: The sample mean is just the average of the set of data;

x̄ =
x1 + x2 + x3 + · · ·+ xn

n
,

where our data set is {x1, x2, . . . , xn}.
We can calculate it with R in either of 2 ways, we can take the sum of the
observations divided by the number of them or we can use the inbuilt mean()

function. Make sure you set na.rm = TRUE.

> head(CombineND)

Year Player Pos Height Wt FortyYD Vertical BenchReps BroadJump

1 2016 Sheldon Day DT 73 293 5.07 30.0 21 102

2 2016 Keivarae Russell CB 71 192 4.49 NA 17 NA

3 2016 C.J. Prosise RB 72 220 4.48 35.5 NA 121

4 2016 Will Fuller WR 72 186 4.32 33.5 10 126

5 2016 Ronnie Stanley OT 78 312 5.20 28.5 NA NA

6 2015 Kyle Brindza K 73 236 5.17 NA 14 NA

ThreeCone Shuttle Draftedby

1 7.44 4.50 Jacksonville Jaguars
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2 NA NA Kansas City Chiefs

3 NA NA Seattle Seahawks

4 6.93 4.27 Houston Texans

5 8.03 4.90 Baltimore Ravens

6 NA NA

> mean(CombineND$Height)

[1] 74.08861

> mean(CombineND$BenchReps)

[1] NA

> mean(CombineND$BenchReps,na.rm = TRUE)

[1] 21.375

The mean gives us a measure of center in the following sense. If we draw a
barchart of discrete data, where we draw a bar above each observation with
height equal to the frequency of that observation; the mean is the balance
point of the picture. It is the point under which I should hold my finger (on
the horizontal axis) to balance the distribution. To create a barplot, we first
make a table showing the frequency of each value in the data with the table()

function.

> Height.freq<-table(CombineND$Height)

> Height.freq

68 70 71 72 73 74 75 76 77 78 79 80

1 6 5 9 14 9 10 12 5 6 1 1

> barplot(Height.freq, xlab="Height",ylab="Frequency", )
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We calculated a mean height of 74.08861 for the players in the data set which
is the balance point of this picture. We can also calculate the mean from a
summary of the frequency distribution. We have

x̄ =
y1 · f1 + y2 · f2 + · · ·+ yk · fk

N

where the set {y1, y2, . . . , yk} is a full set of representatives for the observations
in our data set and fi is the frequency with which yi occurs in the data set.
The number of observations in the data set is N . From our summary table
of CombineND$Height above, we see that we can calculate the mean in the
following way:

> reps<-c(68,70:80)

> reps

[1] 68 70 71 72 73 74 75 76 77 78 79 80

> freq<-c(1 , 6 , 5, 9, 14, 9, 10, 12, 5, 6, 1, 1)

> freq
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[1] 1 6 5 9 14 9 10 12 5 6 1 1

> m<-sum((reps*freq)/sum(freq))

> m

[1] 74.08861

Deviations from the mean. The deviation of a data point xi from the meanx̄
is xi − x̄. If the deviation is negative, the data point falls below the mean and
if it is positive, the data point falls above the mean. The sum and hence the
average of all deviations from the mean should be 0.

> devH<-CombineND$Height-mean(CombineND$Height)

> head(devH)

[1] -1.088608 -3.088608 -2.088608 -2.088608 3.911392 -1.088608

> sum(devH)

[1] 3.836931e-13

Trimmed Mean The mean can be heavily influenced by outliers. For Example:

> y<-c(1,2,3,4,5,6,7,8,9,1000)

> mean(y)

[1] 104.5

We see here that the mean is not representative of the majority of the data set.
For this reason, people often use a trimmed mean, where they trim off a certain
percentage of the highest and lowest observations before calculating the mean.
(One often sees this in action in sports where a panel of judges give a rating or
score for a performance and the highest and lowest scores are dropped before
averaging.) To calculate the trimmed mean, trimming 10% (equal amounts from
both ends) we use:

> mean(y,trim=0.10)

[1] 5.5

> mean(CombineND$Height,trim=0.10)

[1] 74.09231
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It doesn’t make a big difference in the second case since there are no outliers
in the data. On the other hand, income distributions are quite often skewed.
We can make a histogram to show the salaries which splits the range of salaries
into several categories and shows the number of observations in each category.

> #NFLSalary<-table(NFL$AVG.Annual.Salary)

> #NFLSalary

> mean(NFL$AVG.Annual.Salary,na.rm=TRUE)

[1] 2269873

> max(NFL$AVG.Annual.Salary,na.rm=TRUE)

[1] 2.2e+07

> mean(NFL$AVG.Annual.Salary,na.rm=TRUE,trim=0.10)

[1] 1600828

> hist(NFL$AVG.Annual.Salary, xlab="Salary",ylab="Frequency" )

Histogram of NFL$AVG.Annual.Salary
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Clearly the income distribution is heavily skewed and the trimmed mean is
less than the overall mean.
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> quantile(NFL$AVG.Annual.Salary,0.90, na.rm=TRUE)

90%

6e+06

The Median Because the mean is suceptible to the influence of outliers, the
median is frequently used as a measure of center. The Median has the property
that 50% of the data lies above it and 50% below it. If we have an odd number
of observations, we can find the median by sorting them from smallest to largest
and finding the middle observation. For example in the data set y1 below which
is already ordered, the median is the sixth observation, median = 5.We see here
that the median is more representative than the mean since the mean is skewed
by the outlier.

> y1<-c(0,1,2,3,4,5,6,7,8,9,1000)

> median(y1)

[1] 5

> mean(y1)

[1] 95

if we have an even number of observations, we sort from smallest to largest
and the median is the average of the middle two observations. For example in
the example below, the median is the average of the fifth and sixth observation
which is 5.5.

> y<-c(1,2,3,4,5,6,7,8,9,1000)

> median(y)

[1] 5.5

The medain is not influenced by outliers, so trimming does not change it.

> median(CombineND$Height)

[1] 74

> mean(CombineND$Height)

[1] 74.08861

> median(NFL$AVG.Annual.Salary, na.rm=TRUE)
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[1] 901250

> mean(NFL$AVG.Annual.Salary, na.rm=TRUE)

[1] 2269873

We see that the median is much more representative for players’ salaries in the
NFL, but for the Height of the players from ND in the NFL Combine data, it
is very close to the mean. Since the median cuts the distrinution of the data
in half, we see that when the barchart or histogram are roughly symetric about
the center, the median is close to the mean, but when the data is skewed, they
can be quite far apart.

Quartiles and Percentiles(quantiles): The p th percentile is a value
for which p percent of the data is less than the value and (1 - p)
percent of the data is above it. The median is a special case of this, it is
the 50th percentile. There is some ambiguity in the definition and sometimes
different formulas for the calculation of the pth percentile. Like the median,
sometimes it coincides with a data point and sometimes it lies between two
data points. Whatever definition is used to come up with the actual number,
the pth percentile always has the same interpretation (given in boldface above).

The 25th, 50th and 75th percentiles are also called quartiles. We can calcu-
late these and all percentiles in R using the quantile command.

> quantile(CombineND$Height, 0.25, na.rm=TRUE)

25%

72

> quantile(CombineND$Height, c(0.25,0.5,0.75), na.rm=TRUE)

25% 50% 75%

72 74 76

> quantile(NFL$AVG.Annual.Salary,0.25, na.rm=TRUE)

25%

578513

> quantile(NFL$AVG.Annual.Salary,0.9, na.rm=TRUE)

90%

6e+06
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To find which quantile a particular data point is at you can use the ecdf()

function:

> ecdf(NFL$AVG.Annual.Salary)(1000000)

[1] 0.5309369

> ecdf(NFL$AVG.Annual.Salary)(2000000)

[1] 0.6912198

> ecdf(NFL$AVG.Annual.Salary)(3000000)

[1] 0.7672363

The Mode The mode is the most frequently observed value in the data set, it
may not be unique. We can find the mode using the table() function we used
above to summarize the data on heights.

> Height.freq<-table(CombineND$Height)

> Height.freq

68 70 71 72 73 74 75 76 77 78 79 80

1 6 5 9 14 9 10 12 5 6 1 1

> which(Height.freq==max(Height.freq))

73

5

Measures of Variability: It is impotant to have some measure of variability
in the data.

The Range of a set of data is the largest measurement minus the smallest
measurement. For example

> x1<-c(1,22,25,25,25,25,28,50)

> x2<-c(1,2,3,4,47,48,49,50)

> max(x1)-min(x1)

[1] 49

> max(x2)-min(x2)

[1] 49
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> range(x1)

[1] 1 50

> range(x2)

[1] 1 50

Although the range is easy to compute it is a crude measure of variability. The
above data sets have the same range, 49, but obvious differences in the pattern
of variability. Consider the following data showing the number of completions
in recent games for two quaterbacks:

Game 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Quarterback A: 20 30 29 28 30 20 21 22 25 24 20 22 30 27 28 26 29 29 23 21 21
Quarterback B: 25 30 29 20 21 25 27 22 23 26 27 25 24 26 23 24 25 26 28 24

> options(width=150)

> QBA<-c(20, 30, 29, 28, 30, 20, 21, 22, 25, 24, 20, 22, 30, 27, 28, 26,29,29,23,21,21)

> QBB<-c( 25, 30, 29, 20, 21, 25, 27, 22, 23, 26, 27, 25, 24, 26, 23, 24,25,26,28,24)

> mean(QBA)

[1] 25

> mean(QBB)

[1] 25

> range(QBA)

[1] 20 30

> range(QBB)

[1] 20 30

> A<-table(QBA)

> B<-table(QBB)

> barplot(A, xlab="Number Completions QBA",ylab="Frequency", )
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> barplot(B, xlab="Number Completions QBB",ylab="Frequency", )
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Both Quarterbacks have the same average number of completions over their re-
cent games, x̄ = 25 and the same range. However we see that Quarterback A has
a a more varied performance record than Quarterback B. Obviously one needs
to take this difference in variability in the data into account when comparing
the quarterbacks.

We can see that the deviations from the mean here catch the variability, however
when we average the deviations from the mean, we get 0 because of cancella-
tion. Now the distance of a data point from the mean is |xi − x̄| which is the
absolute value of the deviation from the mean. The average distance of the data
points from the mean is a reasonable measure of variability, however the more
commonly used measure is the standard deviation, which is similar but not
quite the same.

The Sample Variance The sample variance is almost the average squared
distance of the data points from the mean and is given by

s2 =
(x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xn − x̄)2

n− 1

where n is the number of observations in the sample. (The division by n − 1
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gives us a better estimator of the population variance.) We can calculate this
using the var() function in R.

> var(QBA)

[1] 14.6

> var(QBB)

[1] 6.421053

Clearly we see that the variation in the performance of Quarterback A is much
larger than that of Quarterback B accourding to this measure of variability.
One drawback is that we have squared the units in the process of calculation
and this distorts our perception of the difference in performance. So in an effort
to return to the original units, we take the square root of the variance as our
measure of variability. The sample standard deviation is the square root of
the sample variance:

s =
√
s2 =

√
(x1 − x̄)2 + (x2 − x̄)2 + · · ·+ (xn − x̄)2

n− 1

> options(width=100)

> sd(QBA)

[1] 3.820995

> sd(QBB)

[1] 2.53398

> sd(CombineND$Height,na.rm=TRUE)

[1] 2.497126

> m<-mean(CombineND$FortyYD,na.rm=TRUE)

> m

[1] 4.795443

> s<-sd(CombineND$FortyYD,na.rm=TRUE)

> s

[1] 0.282102

> CombineND[which(CombineND$FortyYD<=m-(1.5)*s),]

Year Player Pos Height Wt FortyYD Vertical BenchReps BroadJump ThreeCone Shuttle

4 2016 Will Fuller WR 72 186 4.32 33.5 10 126 6.93 4.27

Draftedby

4 Houston Texans
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Interpretation of the Standard Deviation When presented with raw scores
for performance, it is difficult to interpret their meaning without some measure
of center and variability for the population from which they come. In any set of
data, whether it is population data or a sample, observations that are more than
3 standard deviations from the mean are rare and exceptional. A theorem by
Chebychev tells us that the proportion of values more than k standard deviations
above or below the mean is no more than 1/k2. For example in any data set,
less than 1/9 of the data is more than 3 standard deviations from the mean.
Since this applies to data with any shape, it is a conservative estimate. For
data that looks mound shaped or bell shaped, less than 0.3% of the data will
be more than 3 standard deviations away from the mean.

Quite often when interpreting a data observation, such as height, weight, speed
or salary we are interested in how it compares to the rest of the relevant pop-
ulation. Measures of relative standing describe the location of a particular
measurement relative to the rest of the data. Percentiles give us some idea of
the relative standing of a data point. We can also use z-scores which measure
how many standard deviations an observation lies above or below the mean.

Z-Scores The z-score for a particular measurement in a set of data, measures
how many standard deviations that measurement lies away from the mean.
Recall the deviation xi − x̄ tells us how far above or below the mean the data
point xi lies.

The z-score for a data measurement, xi is

z =
xi − x̄

s

and it tells us how many standard deviations above or below the mean the data
point xi lies.

Example: we know that Ronnie Stanley was pretty tall at 78 inches = 6ft.
6in.. Now lets see where he stands relative to the population of NFL players in
2014, i.e. what the z-score of 78 is.

> (78-mean(NFL$HT, na.rm=TRUE))/sd(NFL$HT, na.rm=TRUE)

[1] 1.507512

> ecdf(NFL$HT)(78)

[1] 0.9670394

We see that he is 1.5 standard deviations above the average for height of football
palyers in the NFL. We also see that 96 percent of the players have a height
less than or equal to Ronnie Stanley’s.

13



Example we can also use z-scores to check which event a player did better
in relative to the other players in the CombineND data set. Since the forty
yard dash and the three cone task have different distributions, it is difficult to
figure out which one a player did better in from the raw performance scores. If
we standardize the scores (calculate z-scores) then we can see in which event
the athlete had a better relative performance. let’s check out Golden Tate’s
performance in the FortyYD and the Three Cone task.

> options(width=100)

> CombineND[CombineND$Player=="Golden Tate",]

Year Player Pos Height Wt FortyYD Vertical BenchReps BroadJump ThreeCone Shuttle

34 2010 Golden Tate WR 70 199 4.42 35 17 120 7.12 4.34

Draftedby

34 Seattle Seahawks

>

We see his time for the FortyYD was 4.42 and for the ThreeCone was 7.12.
Let’s compare his relative performance with z-scores:

> options(width=100)

> zfortyyd<-(4.42-mean(CombineND$FortyYD,na.rm=TRUE))/sd(CombineND$FortyYD,na.rm=TRUE)

> zfortyyd

[1] -1.330877

> zthreecone<-(7.12- mean(CombineND$ThreeCone,na.rm=TRUE))/sd(CombineND$ThreeCone,na.rm=TRUE)

> zthreecone

[1] -0.2556081

We see that although his performance was better than average in both cases,
he did better in the Forty Yard Dash since he was 1.33 standard deviations below
the mean.

We can compute the z-scores for a variable using the scale() function.

> Income<-scale(NFL$AVG.Annual.Salary)

> head(Income)

[,1]

[1,] -0.6334155

[2,] -0.6334155

[3,] -0.6334155

[4,] -0.5272683

[5,] -0.7772278

[6,] -0.7772278

> ecdf(Income)(2)

[1] 0.9469652
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> ecdf(Income)(-2)

[1] 0

> ecdf(Income)(0)

[1] 0.7183265

We can see that the distribution is not symmetric since about 6% of the players
have an income which is more than 2 standard deviations above the mean and
no players have an income more than 2 standard deviations below the mean. In
fact about 72 percent have an income below average.

Viewing The Shape of The Data We can draw pictures of our data.

Bargraph If the data is discrete and there are not too many values involved,
we can draw a bargraph showing the frequencies of each observation in the data
set with the barplot() function. You must first make a frequency table with
the command table().

> Ht<-table(NFL$HT)

> Ht

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

2 3 24 47 111 126 179 208 223 251 213 164 92 38 15 3

> barplot(Ht, xlab="Height",ylab="Frequency" )

15



66 68 70 72 74 76 78 80

Height

F
re

qu
en

cy

0
50

10
0

15
0

20
0

25
0

Stem and Leaf Plot A stem and leaf plot is often a useful way to get a
picture of data.

> stem(CombineND$BenchReps)

The decimal point is 1 digit(s) to the right of the |

1 | 011124

1 | 566677777999999

2 | 0000011111122233444444

2 | 5677999

3 | 0011

3 | 55

Here we see the each data point in the BenchReps data set is split into two
parts, the stem and a leaf. The stem is shared by several data points. For
example the data point 15 is represented in the top line with a 1 to the left of
the divider and a 5 to the right. A data point 16 shares the same stem with a 6
appearing to the right of the 5. the three 6’s in that row show that there were
three 16’s in the data set.

16



Histogram A histogram is similar to a bar graph but is more appropriate for
continuous data or discrete data waith many values. To construct a histogram,
we choose an interval within which all of the observations lie and which starts
and ends close to the minimum and maximum observations respectively, but
with more appealing endpoints if necessary. One important feature of His-
tograms and bar graphs is that the adhere to the area principle, that is the
area of the bar devoted to an interval is proportional to the amount of data
in the interval. We then split that interval into subintervals of equal length
which do not overlap but which cover the entire interval when put together.
The subintervals in R by default follow the right endpoint rule, that is they
include the right end point but not the left of the subinterval. For example

> hist(CombineND$ThreeCone, xlab="Salary",ylab="Frequency" )

Histogram of CombineND$ThreeCone
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R automatically chooses the intervals for us unless we specify. We can find out
where the cuts are made and hence what the sunintervals are by saving the
histogram as an object and then printing it out as follows

> options(width=100)

> histinfo<-hist(CombineND$ThreeCone)

> histinfo
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$breaks

[1] 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4

$counts

[1] 7 10 10 7 5 7 0 2 1

$density

[1] 0.7142857 1.0204082 1.0204082 0.7142857 0.5102041 0.7142857 0.0000000 0.2040816 0.1020408

$mids

[1] 6.7 6.9 7.1 7.3 7.5 7.7 7.9 8.1 8.3

$xname

[1] "CombineND$ThreeCone"

$equidist

[1] TRUE

attr(,"class")

[1] "histogram"

From the list of breaks, we see that the the first subinterval is from 6.6 to
6.8 and since the default in R is to include the right end point, the interval is
(6.6, 6.8]. From the list of counts, we see that there are 7 observations in this
interval. You could call up these pieces of information individually

> histinfo$counts

[1] 7 10 10 7 5 7 0 2 1

You may want to choose your own intervals (called bins) and this is possible.
You can choose the number of breaks with the argument breaks (the argument
main below gives you the label).

> hist(CombineND$ThreeCone, xlab="Salary",ylab="Frequency",

+ breaks=5, main="Breaks = 5" )
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Breaks = 5
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You can also feed R a vector of break points and we switch to intervals
including the left end point below with right=FALSE.

> hist(CombineND$ThreeCone, xlab="Salary",ylab="Frequency",

+ breaks=c(seq(6.5,8.5,by=0.1)), main="vector of breaks",right=FALSE )
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vector of breaks
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Here, the command seq(6.5,8.5,by=0.1) creates a vector starting at 6.5,
ending at 8.5 increasing in increments of 0.1.

Density Plots: If we use the argument the settings freq= FALSE or proba-

bility =TRUE for our histogram, we get a histogram where the total area of
the bars shown is 1 and the area of each bar gives the probability of getting an
observation in that interval if we pick a data point at random.

> hist(CombineND$ThreeCone, xlab="Salary",ylab="Density",

+ probability=TRUE, main="Density" )
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For a continuous variable such as the time it take an athlete to complete the
three cone task, we could take a finer and finer mesh of intervals to cover the
entire range of possible times that could occur in the data. if we had data for
the entire population of football players who had participated in this event, the
outline of the (probability ) histogram would start to look more and more like a
continuous curve as we took more and more intervals. For the limiting curve, the
total area underneath it would be 1 and the area above any interval would be the
probability that we would observe a time in that interval if we choose a record
at random from the data. This limiting curve is called the density function
of the variable. R will estimate the (probability) density function (pdf) for a
variable from the sample data with the command density().

> plot(density(CombineND$ThreeCone,na.rm=TRUE))
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We can plot the scaled histogram and the approximate density on a single graph.
Below we choose the window to show with xlim and ylim arguments and we
add the density plot with the command lines. The argument lwd=2 tells R to
draw the density line with twice the width of the default line width.

> hist(CombineND$ThreeCone, main="Histogram and Density",xlab="Time",

+ probability=TRUE, xlim=range(c(6,9)),ylim=range(c(0,1)) )

> lines(density(CombineND$ThreeCone,na.rm=TRUE),lwd=2)
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Time

D
en

si
ty

6.0 6.5 7.0 7.5 8.0 8.5 9.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Shape of The Data With large sets of data and narrow class widths, the
histogram looks roughly like a smooth curve. The mean, median and mode,
have a graphical interpretation in this case. The mean is the balance point
of the histogram of the data, whereas the median is the point on the
x-axis such that half of the area under the histogram lies to the right
of the median and half of the area lies to its left. The mode occurs
at the data point where the graph reaches its highest point. This of
course may not be unique.
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Mean, Median, and Mode 

 

 

The most common measure of center is the mean, which locates the 

balancing point of the distribution.  The mean equals the sum of the 

observations, divided by how many there are.  The mean is also affected by 

extreme observations (outliers and values which are far in the tail of a 

distribution that is skewed).  So the mean tends to be a good choice for 

locating the center of a distribution that is unimodal and roughly symmetric, 

with no outliers.   

 

The median is a more robust measure of center, that is, it is not influenced 

by extreme values.  The median is the middle observation when the data are 
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Skewed Left

Skewed Data

Definition A data set is said to be skewed if one tail of the distribution has
more extreme observations than the other tail.

The mean is sensitive to extreme observations, but the median is not(check out
the example below).

Example Consider the data from the above example concerning the average
yearly salary of NFL Players. here the density function looks like this

> plot(density(NFL$AVG.Annual.Salary,na.rm=TRUE))

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07

0e
+

00
1e

−
07

2e
−

07
3e

−
07

4e
−

07
5e

−
07

6e
−

07

density.default(x = NFL$AVG.Annual.Salary, na.rm = TRUE)

N = 1697   Bandwidth = 3.448e+05
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For data skewed to the right, the mean is larger than the median and for data
skewed to left, the mean is less than the median.

> mean(NFL$AVG.Annual.Salary,na.rm=TRUE)

[1] 2269873

> median(NFL$AVG.Annual.Salary,na.rm=TRUE)

[1] 901250

Larger standard deviations mean the data is more spread out and tails are
fatter. One might quote the mean as a measure of center here when recruiting,
but perhaps quote the median if one is arguing in favour of increased benefits.

Example Let us compare the densities for the number of points per minute per
game for Jeremy Lin and Stephen Curry for the year 2015 2016.

> plot(density(PPM$linptspermin,na.rm=TRUE),xlim=range(c(0,2)),

+ ylim=range(c(0,2.5)),main="PPM Lin Curry(in Blue)",xlab="PPM" )

> lines(density(PPM$Curryptspermin,na.rm=TRUE),lwd=2,col="blue")
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These densities tell us that Curry’s performance is more spread out and should
have a higher standard deviation. It is roughly bell shaped and the mead should
be close to the median at the center of the distribution. Lin’s performance is
a bit skewed so we would expect the mean to be higher than the median and
less than the mean for Curry. It is also more concentrated and we would expect
the standard deviation to be less than that for Curry. Although they both have
roughly the same number of games where their points per minute are between
0.5 and 0.1, about half of Curry’s game have PPM higher than 1 whereas the
probability thia will happen for Lin is virtually 0. You can get a summary of
the statistics in the file in a number of ways with the functions shown below:

> summary(PPM)

linptspermin Curryptspermin

Min. :0.0530 Min. :0.3570

1st Qu.:0.3217 1st Qu.:0.6815

Median :0.4145 Median :0.8920

Mean :0.4513 Mean :0.8827

3rd Qu.:0.5982 3rd Qu.:1.0625

Max. :0.9350 Max. :1.5000

NA's :7

> sapply(PPM,mean,na.rm=TRUE)

linptspermin Curryptspermin

0.4512564 0.8827324

> sapply(PPM,sd,na.rm=TRUE)

linptspermin Curryptspermin

0.1906475 0.2710184

> sapply(PPM,median,na.rm=TRUE)

linptspermin Curryptspermin

0.4145 0.8920
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