
Normal Distributions, t distributions, the Central Limit Theorem
and Confidence Intervals

> CombineND<-read.csv("combineND.csv",header = TRUE)

> MLB<-read.csv("MLB.csv",header = TRUE)

> NBA<-read.csv("NBA.csv",header = TRUE)

> NFL<-read.csv("NFL.csv",header = TRUE)

> Pass2005<-read.csv("Pass2005.csv",header = TRUE)

> Rush2005<-read.csv("Rush2005.csv",header = TRUE)

One important family of distributions for continuous random variables is the
family of Normal Distributions. The formula for the normal density function
is given by

f(x) =
1√

2πσ2
e−(x−µ)

2/2σ2

where µ is the mean of the distribution and σ2 is the variance of the distribu-
tion. Since the formula for the distribution depends only on the two unknown
parameters µ and σ, one frequently refers to the above density as N(µ, σ) or
Normal(µ, σ).

The graph of this distribution is symmetric around the center and bell
shaped. The mean, median and mode are the same and the points of inflection
are sitiuated one standard deviation from the mean on both sides. The larger
the value of σ, the more spread out the distribution is and different values of µ
give a different position for the center of the curve. Below we show N(0, 1) and
N(2, 1/2)(in red).
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For data from a population with denisty N(µ, σ), the z-scores of the data
{xi−µ

σ
} have a standard normal distribution, that is they are normal with mean

0 and standard deviation 1.
As with all densities, if X is a random variable which is normally distributed,

with mean µ and standard deviation σ, we can find the probability that X takes
values in the interval (a, b) (P (a < X < b)) by calculating the area under the
corresponding normal desity above that interval. For example if X is normally
distributed with mean 2 and standard deviation 1/2, the probability that X
takes a value between 1.5 and 2.5 is shown in the diagram below.
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As mentioned above if we scale our observations of the variable X (which
is normal with mean 2 and standard deviation 1/2) to their Z-scores, the new
variable Z = X−2

1/2
is a standard normal random variable. Thus

P (1.5 < X < 2.5) = P (
1.5− 2

1/2
< Z <

2.5− 2

1/2
) = P (−1 < Z < 1).

Thus the areas highlighted in the garph shown below are the same and the
probability that X lies is any interval depends only on how many standard
deviations the end points are from the mean.
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We can of course calculate this area without drawing the curve. For any
family of distributions R has four functions for getting information about the
density.

The d, p, q and r functions.

• The d function returns the pdf of the distribution.

• The p function returns the cumulative density function.

• The q function returns the quantiles.

• the r function returns random samples from a distribution.

The normal densities are denoted by norm in R. They have two parameters which
characterize them, the mean and the standard deviation sd. If left unspecified,
R sets the mean to 0 and the standard deviation to 1. We show how the above
functions apply to the normal distributions in the following examples.

Example: the d function(used to plot the density). To get the height of the
normal density curve with mean 2 and standard deviation 1/2 above the point
2 (the highest point on the curve) we can use the command

> dnorm(2,mean=2,sd=1/2)

[1] 0.7978846

This is not a calculation we have much interest in other than perhaps to plot
normal densities.
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The p function(P (X ≤ a).) This is the function we use to calculate probabil-
ities. The command pnorm(a,mean=µ,sd=σ) will return the probability that a
normal random variable X with mean µ and standard deviation σ will take a
value less than a.

Example: If I know that the heights of NFL Players is normally distributed
with mean 74 inches and standard deviation 2.6 inches then we can find the
proportion fo NFL players with height less than or equal to 72 inches with the
following command:

> pnorm(72,mean=74,sd=2.6)

[1] 0.2208782

We see that approximately 22 percent of players have height less than 72 inches.

Example: Find the area under the normal density N(2,1/2) between 1.5 and
2.5 shown above.

> pnorm(2.5,mean=2,sd=0.5) - pnorm(1.5,mean=2,sd=0.5)

[1] 0.6826895

Empirical rule: The following rule of thumb is good to keep in mind when
dealing with data that looks bell shaped:

If X is a normally distributed random variable, then

• roughly 68% of the population values will be within 1 standard deviation
of the mean i.e. P (µ− σ < X < µ+ σ) ≈ 0.68.

• roughly 95% of the population values will be within 2 standard deviations
of the mean i.e. P (µ− 2σ < X < µ+ 2σ) ≈ 0.95.

• roughly 99.7% of the population values will be within 3 standard devia-
tions of the mean i.e. P (µ− 3σ < X < µ+ 3σ) ≈ 0.997.

Its enough to check this for the distribution of Z-scores:

> pnorm(1) - pnorm(-1)

[1] 0.6826895

> pnorm(2) - pnorm(-2)

[1] 0.9544997
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> pnorm(3) - pnorm(-3)

[1] 0.9973002

The q function(quantiles). The command qnorm(c(p,q,r), mean = µ, sd

= σ) returns the p th, q th and r th quantiles for a normal random variable X
with mean µ and standard deviation σ.

Example: If the height of NFL players is normally distributed with mean
74 inches and standard deviation 2.6 inches, find the 0.1 th, 0.5 th and 0.9th
quantiles (10th, 50th and 90th percentiles) for the heights of NFL players.

> qnorm(c(0.1,0.5,0.9),mean=74,sd=2.6)

[1] 70.66797 74.00000 77.33203

Of course it should not surprise us that the 50th percentile is 74 in the above
example.

Example Find an interval (−zα/2, zα/2) centered at 0 for which

P (−zα/2 < Z < zα/2) = 1− α

where Z is a standard normal random variable for the values of α shown below.
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α = 0.01 Here 99% of the area under the curve lies between −zα/2 and zα/2,
thus the tails have area (1− 0.99)/2 = .005. Thus −zα/2 and zα/2 are the .005
th and .995 th quantiles respectively.

> qnorm(.005)

[1] -2.575829

> qnorm(.995)

[1] 2.575829

α = 0.05 Here 95% of the area under the curve lies between −zα/2 and zα/2,
thus the tails have area (1− 0.95)/2 = .025. Thus −zα/2 and zα/2 are the .025
th and .975 th quantiles respectively.
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> qnorm(.025)

[1] -1.959964

> qnorm(.975)

[1] 1.959964

Note: We can say that for any normal random variable X, with mean µ and
standard deviation σ

P (µ− 1.96σ < X < µ+ 1.96σ) = 0.95

or 95% of the population will have values of X in this interval.

The r function(random samples). The r function allows us to take a random
sample from a population with a particular density.

Example: Testing the empirical rule. Simulate taking a random sample
of size 1000 from a normal population with mean 74 and standard deviation 2.6
and check what percentage of the data lies within 1, 2, and 3 standard deviation
from the mean.

> mu<-74

> sigma<-2.6

> samp<-rnorm(1000,mean=mu,sd=sigma) #take sample

> head(samp)

[1] 77.92306 74.45410 75.25245 75.21480 77.25079 78.12305

> sum((samp> mu-sigma)&(samp<mu+sigma)) #within 1 sd of mean

[1] 682

> sum((samp> mu-2*sigma)&(samp<mu+2*sigma)) #within 2 sds of mean

[1] 952

> sum((samp> mu-3*sigma)&(samp<mu+3*sigma)) #within 3 sds of mean

[1] 999
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t distributions(used for small samples). This is a family of mound shaped
distributions which look similar to the standard normal distribution. They will
be used when estimating population parameters or testing hypotheses using
small samples. Their shape depends on a parameter called degrees of freedom,
df = ν which is related to sample size. For large values of ν these distributions
are very close to the standard normal distribution.

We can of course use the d, p, q and r functions to explore t distributions.
We see that these distributions have fatter tails for smaller degrees of freedom.

> pnorm(1.96) - pnorm(-1.96)

[1] 0.9500042

> pt(1.96, df=30) - pt(-1.96, df=30)

[1] 0.9406577

> pt(1.96, df=10) - pt(-1.96, df=10)

[1] 0.9215638

> pt(1.96, df=5) - pt(-1.96, df=5)

[1] 0.892712

> qnorm(c(0.001, 0.01,0.05))

[1] -3.090232 -2.326348 -1.644854

> qt(c(0.001, 0.01,0.05),df=30)

[1] -3.385185 -2.457262 -1.697261
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> qt(c(0.001, 0.01,0.05),df=10)

[1] -4.143700 -2.763769 -1.812461

> qt(c(0.001, 0.01,0.05),df=5)

[1] -5.893430 -3.364930 -2.015048

Central Limit Theorem.

Lets consider the following experiment and associated random variable:

Experiment: Take a random sample of size 30 from our data on the popula-
tion of NFL players in 2014 and record the heights of the players in the sample.
A random sample assumes that the players in the sample are chosen indepen-
dently and hence we say that the heights of the players in the sample are iid
(independent and identically distributed).

Random Variable X̄: X̄ is the average height of the players in the sample.

X̄ varies from sample to sample and as a random variable it has a probability
distribution. As it turns out this distribution is approximately a normal distri-
bution, with mean equal to the population mean µ ≈ 74 and standard deviation
equal to σ/

√
n ≈ 2.6/

√
30 where σ is the population standard deviation and

the sample size is 30. (Note that bigger sample sizes give smaller variation in
the sample mean). Lets simulate this experiment 1000 times (we choose 10000
random samples of size 30 from the 1699 in the sample) calculate the value of X̄
for each sample and plot the density associated to the 1000 means in the data.
We will also plot a normal distribution with mean equal to the population mean
and standard deviation equal to the population standard deviation divided by√

30.
First lets calculate the population mean and standard deviation.

> #the number of different samples of size 30 possible.

> choose(nrow(NFL), 30)

[1] 2.34584e+64

> mean(NFL$HT) #population mean

[1] 74.02001

> sd(NFL$HT)

[1] 2.640105
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We use our old trick of creating a vector of 0’s and filling it up with the sample
means using a for loop.

> smeans<-mat.or.vec(1,1000)

> for(i in 1:1000){

+ smeans[i]<-mean(sample(NFL$HT,size=30))

+ }

Now lets plot the denity associated to our vector of means.

> plot(density(smeans), xlab="x-bar",

+ main = "means from 1000 samples size 30")
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If we add the normal density with the same mean as the population mean
µ = 74.02001 and standard deviation equal to the population standard deviation
divided by

√
30 in blue, we see that it fits the density of the means very well.

> plot(density(smeans), xlab="x-bar",

+ main = "sample means vs Normal")

> lines(curve(dnorm(x,mean=mean(NFL$HT),

+ sd = sd(NFL$HT)/sqrt(30)), lwd=2, col="blue",add=TRUE))
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We also compare the density to the original population density and see that
the means from the samples are much more concentrated around the mean.

> plot(density(smeans), xlab="",

+ xlim=range(c(65,80)),ylim=range(c(0,0.9)),

+ main = "sample means density vs pop density")

> lines(density(NFL$HT, na.rm=TRUE), lwd=2,col="red")
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Larger samples with give a smaller variance in the distribution of the sample
means and thus less room for error when estimating the population mean using
a sample mean. Lets compare to the means of 1000 samples of size 10.

> smeans1<-mat.or.vec(1,1000)

> for(i in 1:1000){

+ smeans1[i]<-mean(sample(NFL$HT,size=10))

+ }

> plot(density(smeans), xlab="x-bar",

+ main = "sample size 30 vs sample size 10")

> lines(density(smeans1), lwd=2, col="green")
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Even if the unerlying distribution is skewed as in player’s salaries, the distribu-
tion of sample means will still be approximately normal.

> smeans2<-mat.or.vec(1,1000)

> for(i in 1:1000){

+ smeans2[i]<-mean(sample(NFL$AVG.Annual.Salary,size=30),na.rm=TRUE)

+ }

> plot(density(smeans2), xlab="x-bar",

+ main = "sample size 30 NFL Salaries")

> lines(curve(dnorm(x,mean=mean(NFL$AVG.Annual.Salary,na.rm=TRUE),

+ sd = sd(NFL$AVG.Annual.Salary,na.rm=TRUE)/sqrt(30)),

+ lwd=2, col="blue",add=TRUE))
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The Sampling Distribution of x̄/ The Central Limit Theorem

For any population, the sample mean, x̄, is an unbiased estimator of the population mean, µ.

For a population with any distribution, with mean µ, and standard deviation σ, The sampling
distribution of the sample mean, x̄, has the following properties:

1. The mean of the sampling distribution of x̄ equals the mean of the sampled population, µ. That
is :

µx̄ = E(x̄) = µ.

2. The standard deviation of the sampling distribution of x̄ is:

σx̄ =
σ√
n

(This is true if n < .05N , where N is the population size).

3. For n large, the sampling distribution of x̄ is approximately N(µ,
σ√
n

).

Proportions as means. Consider the following experiment:

Experiment: Choose an attempted three point shot at random from the pop-
ulation of Stephen Curry’s attempted three point shots in regular season games
and record a 1 if he made the shot and a 0 if he did not.

Random Variable The value we record is an example of a Bernoulli random
variable. (a variable that takes only two values, in our case 0 or 1.) The
population mean here is µ = # 1′s

total # shots
= S. Curry’s 3 pt percentage or

the proportion of 3 point shots he made from all he attempted.
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Thus a population proportion is a population mean where the variable
in question is a Bernoulli random variable and sample proportions (for
a given n) are approximately normally distributed with mean equal
to the population proportion p and standard deviation equal to the population
standard deviation

√
p(1− p) divided by

√
n where n is the size of the samples.

It is not too hard to show that

A Bernoulli random variable (with two values 0 and 1)

has population mean µ = p, and population standard deviation σ =
√
p(1− p).

where p is the proportion of 1’s in the population.

Confidence Intervals for the Population Mean

If I take a sample of size n from a population {x1, x2, . . . , xn}, I can use the
sample mean x̄ to estimate the population mean. However, I know that the
sample mean varies from sample to sample, so it is likely that my estimate
has some error. Because of the central limit theorem, I can supply an
estimate of this error, or a margin of error for my estimate. In fact
what I do is supply an interval around x̄ called a confidence interval and say
something like “I am 95% confident that the population mean is somewhere in
this interval”.

We know from the central limit theorem that for large fixed values of n the
statistic x̄ is approximately normally distributed with mean µ (the unknown
population mean) and standard deviation σ/

√
n, where σ is the (usually un-

known) population standard deviation. Therefore we know that the statistic

Z =
x̄− µ
σ/
√
n

is approximately normally distributed with mean 0 and standard deviation 1.
Thus we know that P (−1.96 < Z < 1.96) ≈ 0.95. In fact P (−zα/2 < Z <
zα/2) ≈ (1 − α) where the value of zα/2 is given in the following table (which
can be verified using the
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Confidence level zα
2

1− α
0.60 0.841
0.70 1.036
0.80 1.282
0.90 1.645
0.95 1.96
0.98 2.32
0.99 2.576
0.999 3.291

P (µ− 1.96
σ√
n
< x̄ < µ+ 1.96

σ√
n

) ≈ 0.95

and therefore subtracting µ from both sides of both inequalities, we get

P (−1.96
σ√
n
< x̄− µ < +1.96

σ√
n

).

Now subtracting x̄ from both sides of both inequlaities and multiplying by -1,
we get

P (x̄− 1.96
σ√
n
< µ < x̄+ 1.96

σ√
n

) ≈ 0.95.

Unfortunately we usually do not know the population standard deviation σ.
However we can substitute and estimate of σ from the sample, namely the
sample standard deviation s. This gives us the following 95% confidence interval
for the population mean µ when n is large:

P (x̄− 1.96
s√
n
< µ < x̄+ 1.96

s√
n

) ≈ 0.95

or we are 95% confident that the population mean µ is in the interval

(x̄− 1.96
s√
n
, x̄+ 1.96

s√
n

).

The statistic SE = s√
n

is referred to as the standard error of the mean and in
this case 1.96 s√

n
is called the margin of error.

If we want a different level of confidence, we should change 1.96 in the above
calculations to an appropriate value of zα

2
. We get

P (x̄− zα
2

σ√
n
< µ < x̄+ zα

2

σ√
n

) ≈ 1− α

where zα
2

is given in the table above. In other words, we are (1 − α)100%
confident that the population mean µ is in the interval

x̄± zα
2
SE.
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Note We cheated a little here by estimating the population standard deviation
σ by the sample standard deviation s. This changes the distribution of the
statistic Z, the statistic

T =
x̄− µ

s√
n

has an approximate t distribution with n − 1 degrees of freedom. For large
values of n, this is approximately standard normal and our confidence intervals
are still fairly accurate. However, for small values of n (less than 20 or so)
one should replace the values for zα

2
in the table above by the corresponding

quantiles for the appropriate t distribution.

Example Suppose we want to estimate the average yards gained for a college
football team if they run the ball from anywhere between their 45 yard line
to their 50 yard line with less than 3 yards to first down. We might consider
all such plays made in the year 2005 as a representative sample (although not
entirely random). There were 65 such plays in 2005, the data for which appears
in the file Rush2005.csv

> Rush2005$Yards

[1] 2 1 0 45 4 -4 0 48 1 0 2 8 -11 1 1 4 4 0 3

[20] 38 2 3 2 8 3 -1 1 -1 0 2 3 8 30 2 3 6 3 -7

[39] 3 13 17 0 0 4 3 1 1 2 1 0 4 5 -1 1 -2 -1 2

[58] 1 0 -1 4 2 -2 -4 -1

> mean(Rush2005$Yards)

[1] 4.092308

> sd(Rush2005$Yards)

[1] 10.2511

From this we can make a 95% confidence interval for the average yards gained
by such a play in such a position:

> xbar<-mean(Rush2005$Yards)

> s<-sd(Rush2005$Yards)

> n<-65

> error <- qnorm(0.975)*s/sqrt(n)

> #left

> xbar-error

[1] 1.600228

15



> #right

> xbar+error

[1] 6.584388

A Confidence interval for the population proportion

Because the population proportion is an average of a (Bernoulli) random vari-
able (with values 0 or 1) as pointed out above, we can also use the above
method to find a confidence interval for the population proportion p, using a
sample proportion p̂ from a sample of size n. As above we have that p̂−p√

p(1−p)/n
is approximately normally distributed with mean 0 and standard deviation 1
for large values of n. We can approximate

√
p(1− p)/n using the sample pro-

portion as an estimate of p, to get a standard error SE =
√
p̂(1− p̂)/n

Therefore, we have
p̂± zα

2
SE

gives a confidence interval for the population proportion p with level of confi-
dence 1− α.

Example Suppose we want to know what percentage of Pass plays on fourth
down in College football from the 45-50 yard line ended in a first down. Once
again, we take all such plays from the 2005 season as a sample and calculate the
proportion of such plays that ended in a first down p̂. There were 65 such plays
in 2005 and they are stored in a file called Pass2005.csv. Lets make a 99%
confidence interval for the percentage of successful pass plays in this situation.

> Pass2005$X1st.Down

[1] 0 0 1 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

[39] 0 0 1 0 1 0 0 1 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

> n=length(Pass2005$X1st.Down)

> phat<-mean(Pass2005$X1st.Down)

> phat

[1] 0.390625

> se<-sqrt((phat*(1-phat))/n)

> #left

> phat-qnorm(.995)*se

[1] 0.2335347
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> #right

> phat+qnorm(.995)*se

[1] 0.5477153

For smaller samples one needs to change the SE a little.
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