
Hypothesis Testing

In the previous set of lectures, we made some casual judgements as to whether
a basketball player’s play fitted the random model or not by looking at the
value of a test statistic in the data, namely the longest run of baskets in the
data. We knew the expected value and standard deviation of the test statistic
which depended on the sample size and the probability of the player making a
basket on each shot. If the longest run of baskets in the data was too long or
two short, then we decided that the probability that that could happen due to
randomness was small enough that the probability of success on each trial did
not remain constant throughout. In this section we will make this method of
testing a hypothesis more rigorous. We will give a level of confidence for our
results and a measure of the strength of our evidence (the p-value).

The Elements of Hypothesis Testing

Rare Event Concept We have seen that for any set of data, observing
data that is four or more standard deviations away from the mean is very very
rare and for data with a normal distribution observing data that is more than
2 standard deviations from the mean is rare enough that an observation of such
data might lead us to change our beliefs about the underlying distribution of a
population.

For Example If someone tells me that they flipped a coin 100 times and the
longest run of heads in the outcome had length 50. I know that for such an

experiment the longest run of heads has an expected value of µ =
− ln((50)

ln(1/2)
≈

5.64 and standard deviation σ =
−π√

6 ln(1/2)
≈ 1.85. This would mean that

the observed value of the statistic ”the longest run of heads” in the data has

a z-score of z =
50− 5.64

1.85
≈ 23.98 and is roughly 23.98 standard deviations

above the mean. Although possible, this event would be so rare for a fair coin
flipped 100 times, it would lead me to reject the hypothesis that the data was
the result of flipping a fair coin 100 times.

This reasoning is the essence of Hypothesis testing. Since this is such a simple,
yet powerful tool, we make the method more precise so that we can apply it to
any situation where we have knowledge of the distribution of a sample statistic.
This type of Statistical inference is called Hypothesis Testing

Example 1: How Predictable is the Notre Dame Offense on third
down with 5 to go? In the 2013 football season, the Notre Dame football
team made 87 plays on third down with 5 yards or less to go to make first down.
Below we list the sequence of play types they made in those situations in the
order in which they happened. Is this the result of random choices for the play
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(we make no assumption about probability here)?

RUSH RUSH PASS PASS PASS RUSH PASS RUSH RUSH RUSH PASS RUSH PASS PASS

RUSH PASS PASS PASS PASS RUSH PASS RUSH PASS RUSH RUSH RUSH PASS PASS

RUSH RUSH RUSH RUSH PASS PASS PASS RUSH PASS RUSH RUSH PASS RUSH RUSH

RUSH PASS PASS RUSH RUSH RUSH PASS RUSH PASS PASS RUSH RUSH PASS PASS

RUSH PASS PASS RUSH RUSH RUSH PASS RUSH PASS PASS RUSH PASS RUSH PASS

PASS RUSH PASS RUSH PASS RUSH PASS PASS RUSH PASS PASS RUSH PASS RUSH

PASS PASS PASS

Example 2: A Hypothesis about a Population Proportion: Many
people believe that the London Olympics is cursed, since a seemingly large
number (18) of those who participated have had died in the four years since the
olympics. http://www.bbc.com/news/magazine-36055238. In other words
they think that this number is large enough to make them reject the hypothesis
that the death rate among the olympians who participated in London is the same
as that for the population in general in favor of one that says it is significantly
higher. We will assume that the sample comes from the general population.
Here our test statistic will be the proportion of olympians who participated in
the London games who have passed away since. This proportion varies from
sample to sample, however we know that since the sample size is large that
its distribution is approximately normal with mean equal to the population
proportion and corresponding standard deviation. We can then look at the z-
score of the proportion from the sample and if it is too large (or too small) we will
reject the hypothesis that this is a typical sample from the general population
and thus it must come from a different population. If the evidence leads us
believe the olympians are from a different population, we can put forward some
further hypotheses (supernatural or otherwise) as to what might be causing the
elevated risk for these athletes. Of course, any further hypothesis as to the risk
factor involved would require testing.

Example 3: A Hypothesis about a population mean (A hypothetical
example) (a) A football team had (supposedly) inflated 11 footballs before
a game to 12.5 psi (pounds per square inch), the minimum inflation required by
the NFL. At half time, the footballs were measured with the same gauge and
the following psi measurements were recorded:

11.8, 11.2, 11.5, 11.0, 11.45, 11.95, 12.3, 11.55, 11.35, 10.9, 11.35

Suppose the average drop in pressure recorded for such footballs under similar
atmospheric and environmental conditions for this type of gauge is 0.999, would
you suspect tampering with the pressure of the footballs?
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(b) If on the other hand, the measurements at half time were

11.5, 10.85, 11.15, 10.7, 11.1, 11.6, 11.85, 11.1, 10.95, 10.5, 10.9

would you suspect that the balls were tampered with?

Hypothesis Testing : Stating your Hypotheses

In formulating your theory for a test of hypothesis, it is important to state what
the prevailing viewpoint is and if your data leads you to reject the prevailing
viewpoint, what the alternative viewpoint will be, i.e. you should state a null
and an alternative hypothesis.

Definition The Null Hypothesis, denoted H0, is the prevailing viewpoint.
It represents the status quo to the party performing the experiment. It is the
hypothesis that will be supported unless the data provides convincing evidence
that it is false.

Definition The Alternative Hypothesis, (or research Hypothesis) denoted
H1, is the hypothesis which will be accepted if the data provides convincing
evidence of its truth.

Examples In Example 1 above, The Null Hypothesis can be stated as:

H0: The experiment is a result of randomly choosing each play (using a spinner
or die or some such device). or
H0: The number of runs of PASS’s and RUSH’s in the data is consistent with
a random choice on each play.

The Alternative Hypothesis can be stated as:
H1: The experiment is not consistent with each play being chosen randomly
or the number of runs in the data is too high or too low to be consistent with
random choices.

In Example 2 above, The Null Hypothesis can be stated as:

H0: The population of olympians who competed at the London games comes
from a population of young people with an average age of 26 where the mortality
rate is approximately p = 0.00066.
or
H0: p = 0.00066 where p represents the mortality rate per annum for the
population of London olympians.

The Alternative Hypothesis can be stated as:
H1: population of olympians who competed at the London games comes from
a population where p > 0.00066, this is called a one sided alternative hypothesis
since we will reject the hypothesis only if the sample proportion is too large.
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In Example 3 above, The Null Hypothesis can be stated as:

H0: The footballs measured at half time had decreased pressure due to the
normal environmental factors such as ambient temperature and gauge accuracy.
or
H0: µ = 0.999 where µ represents the average rate of deflation .

The Alternative Hypothesis can be stated as:
H1: The average deflation was higher that would be expected under normal
conditions, or µ > 0.999.

The form of the Alternative Hypothesis depends on the conditions under which
you are willing to reject the Null hypothesis (perhaps incurring a cost). Some-
times you are only willing to reject the Null hypothesis if the numbers from the
data are too large (resp. too small), in which case your Alternative hypothesis
will be one sided to the right or (resp. one sided to the left ) as for Examples
2 and 3. Sometimes the Alternative hypothesis is two sided as for Example 1 .
Also sometimes the Null hypothesis covers an interval.

Test Statistic We will decide, as a result of our research, that there is or is
not sufficient evidence to reject the null hypothesis. Before we can decide, we
must make a decision rule. Our null and alternative hypotheses are usually
based on the value of a population parameter. We usually use the value of the
corresponding sample statistic with a known distribution(under the assumption
that the null hypothesis is true) to decide whether to reject the Null Hypothesis
or not.

A Test Statistic is a sample statistic used to decide whether to reject the null
hypothesis or not.

Example 3 Our test statistic will be the T = x̄−0.999
s/
√

11
where x̄ is average of the

decrease in pressure (12.5 minus the observed pressure at half time) for all 11
balls in the sample and s is the sample standard deviation. If the null hypothesis
H0 is true and the average decrease due to environmental factors is µ = 0.999,
then the distribution of this test statistic T is approximately a t distribution
with 10 degrees of freedom (because it is a small sample). Our decision rule will
be of the form: Reject H0 if the observed value of T is too big. Exactly how
big will depend on the level of significance we will want for our results.

Reliability of the results: Level of Significance Note that when we reject
the hypothesis that the coin is unbiased in our introductory example, we might
be making an error. There is a small chance that the coin is unbiased and the
results are just and instance of a rare event.

Definition If we reject the null hypothesis when it is true we might be making
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a Type I Error.

Example: In example 3, if our decision rule is: “Reject H0 if |T | = x̄−0.999
s/
√

11
>

1.812461”, and we end up rejecting the null hypothesis, then the probability
of making a Type I error is approximately 0.05. (Here 1.812461 is the 95th
percentile of the t distribution with 10 degrees of freedom, found using the
command qt(.95,10) in R). In this case we say that our test has a 95% level
of confidence.

Note that we have control over the probability
of a type I error when we are formulating our decision rule.

If I wish to reduce the chances of making a Type I error to 0.01 (increase the
level of confidence to 99%) we would change our decision rule to :
“Reject H0 if |T | = x̄−0.999

s/
√

11
> 2.763769” where qt(0.99,df=10) = 2.763769.

The probability of type I error for our test is usually denoted by α and is called
the level of significance of the test.

For our initial decision rule above, the level of significance of our test is α = 0.05.
For the decision rule “reject H0 if |z| > 2.763769” the level of significance is
α = 0.01.

The Elements of a Hypothesis Test

In general, the method of hypothesis testing follows a similar path to the one
above.

1. We identify the Null and Alternative hypotheses.

2. We identify a test statistic and its probability distribution (For us this will
just be a Normal Distribution).

3. We formulate our decision rule for the test statistic (this depends on what
level of significance we want for our test).

4. We calculate the value of our test statistic from the data collected and decide
whether or not to reject H0.

5. We state our conclusions, (reject H0 or not). We include a measure of relia-
bility, (level of significance) and we state any assumption we made in the process
of testing (In the above example we reject H0 at a 5% level of significance.)

Type I and Type II Error

H0 is true H0 is false
reject H0 Type I error correct
fail to reject H0 correct Type II error
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There are two types of error we can make when we decide whether to accept
the Null Hypothesis or reject the Null hypothesis.

TYPE I Error = Reject H0 when H0 is true.

The Level of Significance of the test, denoted by α is the probability that
we make a type I error.

α = The probability that we reject H0 when H0 is in fact true.

TYPE II Error = Fail to reject H0 when H0 is false.

We let β denote the probability that we make a type II error. The value of β
is usually unknown, because the alternative hypothesis is usually less specific
than the null hypothesis.

β = the probability that we fail to reject the null hypothesis when the null
hypothesis is in fact false.

p-Values The p-value of our data gives us the probability that we will observe
the value of the test statistic we get from our data or something more extreme
(calculated from the probability distribution of our test statistic).

Important Decision rule when testing with R If the p-value of our data
is less than the desired level of significance, we reject the null hypothesis. If the
p-value of our data is not less than the desired level of significance, we do not
reject the null hypothesis. When running our test in R, the test will return the
p value of the data upon which we will base our decision.

Hypothesis test for a sample mean

In Summary, our hypothesis test for a sample mean involves the following
steps:
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One Tailed

Left Tailed Right Tailed Two Tailed Test
Null Hypothesis H0 : µ = µ0 H0 : µ = µ0 H0 : µ = µ0

Alternative Hypothesis Ha : µ < µ0 Ha : µ > µ0 Ha : µ 6= µ0

Level of Significance α α α

Level of Confidence (1− α)100% (1− α)100% (1− α)100%

Test Statistic : t = x̄−µ0
s√
n

t = x̄−µ0
s√
n

t = x̄−µ0
s√
n

Rejection Region t < −tα t > tα t < −tα
2
or t > tα

2

where tα is where tα
2
is

chosen so that chosen so that
P (t > tα) = α P (t > tα

2
= α

2 )

where s denotes the sample standard deviation and the t-distribution used has
n− 1 degrees of freedom.

Example 3(a): Lets test our Hypothesis with a 95% level of confidence:

• Identify Null and Alternative Hypotheses: H0: µ = 0.999 where
µ represents the average rate of deflation .

H1: The average deflation was higher that would be expected under
normal conditions, or µ > 0.999.

• Test Statistic and its distribution: T = x̄−0.999
s/
√

11
, t distribution with

10 degrees of freedom.

• Decision rule qt(95/100, df=10) = 1.812461.

> qt(95/100, df=10)

[1] 1.812461

Reject H0 if T = x̄−0.999
s/
√

11
> 1.812461

• Calculate value of test statistic and decide (we use the first set of
data here).

T =
x̄− 0.999

s/
√

11
=

1.013636− 0.999

0.4099335/
√

11
= 0.1184176.
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> x<-rep(12.5,11)

> p<-c(11.8,11.2,11.5,11,11.45,11.95,12.3,11.55,11.35,10.9,11.35)

> y<-x-p

> m<-mean(y)

> m

[1] 1.013636

> s<-sd(y)

> s

[1] 0.4099335

> t<-(m - 0.999)/(s/sqrt(11))

> t

[1] 0.1184176

In this case we do not reject the Null Hypothesis at a 95% level of signif-
icance. the p value of the data is P (T > 0.1184176) = 0.4539358.

> pvalue<-1-pt(t,df=10)

> pvalue

[1] 0.4540409

• In this case we do not have sufficient evidence to reject the Null Hypoth-
esis.

Example 3(b) On the other hand if the readings at half time were given by
the second set of data, our test statistic would be T = 3.230324 and we would
reject the null hypothesis with a 95% level of confidence. The pvalue of the data
here is 0.004005306.

> p1<-c(11.5,10.85,11.15,10.7,11.1,11.6,11.85,11.1,10.95,10.5,10.9)

> y1<-x-p1

> m1<-mean(y1)

> m1

[1] 1.390909

> s1<-sd(y1)

> s1

[1] 0.4023793
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> t1<-(m1 - 0.999)/(s1/sqrt(11))

> t1

[1] 3.230324

> pvalue1<-1-pt(t1,df=10)

> pvalue1

[1] 0.004508002

Running a t-test in R: R has a built in function to run the above test called
t.test(). The arguments are the name of the data set, mu=population mean
if the null hypothesis were true and alternative =“greater”, “less”or“two.sided”.

Example 3(a) :

> x<-rep(12.5,11)

> p<-c(11.8,11.2,11.5,11,11.45,11.95,12.3,11.55,11.35,10.9,11.35)

> t.test(x-p, mu= 0.999, alternative="greater")

One Sample t-test

data: x - p

t = 0.11842, df = 10, p-value = 0.454

alternative hypothesis: true mean is greater than 0.999

95 percent confidence interval:

0.7896169 Inf

sample estimates:

mean of x

1.013636

Example 3(b) :

> x<-rep(12.5,11)

> p1<-c(11.5,10.85,11.15,10.7,11.1,11.6,11.85,11.1,10.95,10.5,10.9)

> t.test(x-p1, mu= 0.999, alternative="greater")

One Sample t-test

data: x - p1

t = 3.2303, df = 10, p-value = 0.004508

alternative hypothesis: true mean is greater than 0.999

95 percent confidence interval:

1.171018 Inf

sample estimates:

mean of x

1.390909
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Hypothesis test for a sample proportion

In Summary, our hypothesis test for a sample proportion involves the following
steps:

One Tailed

Left Tailed Right Tailed Two Tailed Test
Null Hypothesis H0 : p = p0 H0 : p = p0 H0 : p = p0

Alternative Hypothesis Ha : p < p0 Ha : p > p0 Ha : p 6= p0

Level of Significance α α α

Level of Confidence (1− α)100% (1− α)100% (1− α)100%

Test Statistic : z = p̂−p0√
p0(1−p0)

n

z = p̂−p0√
p0(1−p0)

n

z = p̂−p0√
p0(1−p0)

n

Rejection Region z < −zα z > zα z < −zα
2
or z > zα

2

where zα is where zα
2
is

chosen so that chosen so that
P (z > zα) = α P (z > zα

2
= α

2 )

Here z has an approximate standard normal distribution.

Example 2: Lets test our Hypothesis with a 99% level of confidence:

• Identify Null and Alternative Hypotheses: H0: p = 0.00066 where
p represents the mortality rate per annum for the population of London
olympians.

H1: p > 0.00066,

• Test Statistic and its distribution: Z = p̂−p0√
p0(1−p0)

n

, standard normal

distribution.

• Decision rule

> qnorm(99/100)

[1] 2.326348

Reject H0 if Z = p̂−p0√
p0(1−p0)

n

> 2.326348

• Calculate value of test statistic and decide n = 10, 568, p̂ = 18/(4∗
10, 568) = 0.001703255 (number deaths per year is approx 18/4).
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> n<-10568

> hatp<-18/(4*n)

> hatp

[1] 0.0004258138

> p0<-0.00066

> z<-(hatp-p0)/(sqrt((p0*(1-p0))/(n)))

> z

[1] -0.937409

> pvalue<-1-pnorm(z)

> pvalue

[1] 0.8257259

Z =
0.0004258138− 0.00066√

0.00066(1− 0.00066)/10, 568
=
−0.0002341862

0.0002498229
= −0.9374089.

In this case we do not reject the Null Hypothesis at a 99% level of signif-
icance. the p value of the data is P (Z > −0.9374089) = 0.8257259.

• In this case we do not have sufficient evidence to reject the Null Hy-
pothesis in fact the sample proportion is less than the overall population
proportion.

Running a test about a population proportion in R: R has a built in
function to run the above test called prop.test(). The arguments are x =
sample frequency, n=sample size, p = proportion when null hypothesis is true
and alternative = ”greater”, ”less” or ”two.sided”.

Example 3 :

> prop.test(x=18/4, n=10568, p=0.00066, alternative="greater",correct=FALSE)

1-sample proportions test without continuity correction

data: 18/4 out of 10568, null probability 0.00066

X-squared = 0.87874, df = 1, p-value = 0.8257

alternative hypothesis: true p is greater than 0.00066

95 percent confidence interval:

0.0001997168 1.0000000000

sample estimates:

p

0.0004258138

11



If we do not set correct to FALSE here, R will make a continuity correction
and give us a slightly different p-value.

The Wald Wolfowitz Test

The Wald Wolfowitz test is a test for randomness in data with two values success
(S) and failure (F). The test statistic is the number of runs of Ss and Fs in the
data and unlike the test using the longest run, it does not make any assumptions
about the probability of success or failure on any trial.

Given a sequence with two values, success (S) and failure (F), with Ns

success’ and Nf failures, let X denote the number of runs (of both S’s and F’s).
Wald and Wolfowitz determined that for a random sequence of length N with
Ns success’ and Nf failures (note that N = Ns + Nf ), the number of runs has
mean and standard deviation given by

E(X) = µ =
2NsNf

N
+ 1, σ(X) =

√
(µ− 1)(µ− 2)

N − 1
.

The distribution of X is approximately normal if Ns and Nf are both bigger
than 10. Therefore the Z- value:

Z =
x− µ
σ

=
x−

(2NsNf
N

+ 1
)√

(µ−1)(µ−2)
N−1

has a standard normal distribution.
(see http://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.htm

for more details).
Now we can use this information to test if our sequence of PASSs and RUSHs

in Example 1 is likely to have been generated randomly (as a sequence of inde-
pendent identical Bernoulli trial) or not at a 95% level of confidence.

• Null Hypothesis H0 :, the sequence was generated randomly.

• Alternative Hypothesis HA : The sequence was not generated ran-
domly.

• Test Statistic and its distribution: Z = x−µ
σ

=
x−
(

2NsNf
N

+1
)

√
(µ−1)(µ−2)

N−1

, stan-

dard normal, where x is the observed number of runs in the data.

• Decision rule: RejectH0 if observed value of Z is greater than qnorm(.975)=
1.96 or if the observed value of Z is less than qnorm(.025)= -1.96.
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• Calculate the value of the statistic and decide: Lets S denote PASS
(1 in the data vector below) and F denote RUSH (0 in data vector below).
Ns = 45, Nf = 87− 45 = 42, N = 87 and x = 52.

µ =
2(45)(42)

87
+1 = 44.44828, σ ≈

√
(43.44828)(42.44828)

86
≈ 4.630918.

z = (x− µ)/σ = 1.630719

We do not have enough evidence to reject the null hypothesis here.

> ndrp<-c( 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1,

+ 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0,

+ 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0,

+ 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0,

+ 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1

+ )

> n<-length(ndrp)

> n

[1] 87

> ns<-sum(ndrp)

> ns

[1] 45

> nf=n - ns

> nf

[1] 42

> mu<-((2*ns*nf)/n)+1

> mu

[1] 44.44828

> sigma<-sqrt(((mu-1)*(mu-2))/(n-1))

> sigma

[1] 4.630918

> t<-rle(ndrp)

> t
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Run Length Encoding

lengths: int [1:52] 2 3 1 1 3 1 1 2 1 4 ...

values : num [1:52] 0 1 0 1 0 1 0 1 0 1 ...

> #runs

> x<-length(t$values)

> x

[1] 52

> z<-(x-mu)/sigma

> z

[1] 1.630719

> #p-value

> 2*pnorm(-z)

[1] 0.1029497

• p value P (z > 1.630719) + P (z < −1.630719) = 2*pnorm(-1.630719)

= 0.1029497.

Example: Use the Wald Wolfowitz Runs Test to test the following sequence of
consecutive baskets and misses for basketball player J R Smith for randomness
at a 95% level of confidence:

MMBBMMMMBMMMBBMMBMBMMBMMBMBMMBBMMMMBBMBMBBBBMMBMBMMBBBBMMM BMMMBMM BBMB-

MMMBBMMB BMBMBMMBMMMB MMMMMMMBBMM MMMBMMBMBBMMMM BBBMMMMMMBBBB MMBMMB-

MMBMBMMMMB BMBMBBMBBMB BMMBBBMM BBMBMMMMBMBMM BMMBBMBMMBBMMBBBBMM BMMBM-

MMMMM BMBMBBBMBMBMMBBMMBMBMMM MMMMM

We can just run our code from above with the data encoded in JR below to get
a p-value.

> JR<-c(0,0,1,1,0,0,0,0,1,0,0,0,1,1,0,0,1,0,1,

+ 0,0,1,0,0,1,0,1,0,0,1,1,0,0,0,0,1,1,0,1,0,1,1,1,

+ 1,0,0,1,0,1,0,0,1,1,1,1,0,0,0,

+ 1,0,0,0,1,0,0,

+ 1,1,0,1,0,0,0,1,1,0,0,1,

+ 1,0,1,0,1,0,0,1,0,0,0,1,

+ 0,0,0,0,0,0,0,1,1,0,0,

+ 0,0,0,1,0,0,1,0,1,1,0,0,0,0,
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+ 1,1,1,0,0,0,0,0,0,1,1,1,1,

+ 0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,1,

+ 1,0,1,0,1,1,0,1,1,0,1,

+ 1,0,0,1,1,1,0,0,

+ 1,1,0,1,0,0,0,0,1,0,1,0,0,

+ 1,0,0,1,1,0,1,0,0,1,1,0,0,1,1,1,1,0,0,

+ 1,0,0,1,0,0,0,0,0,0,

+ 1,0,1,0,1,1,1,0,1,0,1,0,0,1,1,0,0,1,0,1,0,0,0,

+ 0,0,0,0,0)

> n<-length(JR)

> n

[1] 232

> ns<-sum(JR)

> ns

[1] 95

> nf=n - ns

> nf

[1] 137

> mu<-((2*ns*nf)/n)+1

> mu

[1] 113.1983

> sigma<-sqrt(((mu-1)*(mu-2))/(n-1))

> sigma

[1] 7.349133

> t<-rle(JR)

> t

Run Length Encoding

lengths: int [1:121] 2 2 4 1 3 2 2 1 1 1 ...

values : num [1:121] 0 1 0 1 0 1 0 1 0 1 ...

> #runs

> x<-length(t$values)

> x
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[1] 121

> z<-(x-mu)/sigma

> z

[1] 1.061584

> #p-value

> 2*pnorm(-z)

[1] 0.2884245

With a p-value of 0.2884245, we would not reject the Null hypothesis that the
data was generated randomly, in other words; we do not have sufficient evidence
of streakiness in the data.
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Testing two population proportions (p1 − p2) from independent samples for equality

Assumptions:

1. We randomly select two independent samples from Population 1 and Pop-
ulation 2 of sizes n1 and n2 respectively. The proportion of interest in the
sample from population 1 is p̂1 and the proportion of interest in the sample
from population 2 is p̂2.

2. The true proportion in population 1 is p1 and the true proportion in
population 2 is p2.

3. n1 and n2 are large in that n1p̂1 ≥ 15 and n1(1− p̂1) ≥ 15 and n2p̂2 ≥ 15
and n2(1− p̂2) ≥ 15

If the above assumptions are satisfied, then the sampling distribution of p̂1− p̂2

is approximately normal with mean p1 − p2 and standard deviation

σp̂1−p̂2 =

√
p1(1− p1)

n1

+
p2(1− p2)

n2

≈

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

This means that the sampling distribution of

z =
(p̂1 − p̂2)− (p1 − p2)√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

is approximately standard normal (note: the value of p1 − p2 is unknown here,
however if we are testing for equality of the population proportions we set it
equal to 0).

Thus we know the sampling distribution of p̂1 − p̂2 which allows us to test
hypotheses about p1 − p2.

There are other variations of the estimate of the variance used and the distri-
bution used depending on sample size etc... You will learn about the details in
higher level statistics courses. Our Test goes as follows:
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Out test goes as follows:

Left Tailed Left Tailed Two Tailed Test
Null Hypothesis H0 : p1 − p2 = 0 H0 : p1 − p2 = 0 H0 : p1 − p2 = 0

Alternative Hypothesis Ha : p1 − p2 < 0 Ha : p1 − p2 > 0 Ha : p1 − p2 6= 0

Level of Significance α α α

Level of Confidence (1− α)100% (1− α)100% (1− α)100%

Test Statistic : z = p̂1−p̂2
σp̂1−p̂2

z = p̂1−p̂2
σp̂1−p̂2

z = p̂1−p̂2
σp̂1−p̂2

σp̂1−p̂2 =
√

p1(1−p1)
n1

+ p2(1−p2)
n2

≈
√

p̂1(1−p̂1)
n1

+ p̂2(1−p̂2)
n2

Distribution St. Normal St. Normal St. Normal

Rejection Region z < −zα z > −zα z < −zα
2
or z > zα

2

where zα is where zα is where zα
2
is

chosen so that chosen so that chosen so that
P (z > zα) = α P (z > zα) = α P (z > zα

2
= α

2 )

P Value P (z < observed value) P (z > observed value) 2P (z > |observed value|)

Example : Football : Peyton Manning’s had a (regular season) career
completion percentage of 65.3% (6125 completions out of 9380 attempts) and
Tom Brady has a (regular season) career completion percentage of 63.8% (5244
completions out of 8224 attempts) could these players have the same level of
skill and the difference in the numbers be due to random variation or did Peyton
Manning have an edge when it came to completing passes or is the difference in
these percentages large enough to be considered so unlikely to happen if both
had equal abilities that we would reject that hypothesis?

Here we have x1 = 6125, n1 = 9380, x2 = 5244, n2 = 8224, p̂1 =
x1

n1

, p̂2 =
x2

n2

.

• Null and Alt. Hyp.: Let’s suppose that we would like to test the
hypothesis H0 : p1− p2 = 0 against the alternative two sided hypothesis
H1 : p1 − p2 6= 0 at a 5% level of significance.

• Test Statistic and distribution: z =
p̂1 − p̂2

σp̂1−p̂2
, standard normal distri-

bution.

• Decision Rule: Notice that since the distribution is approximately nor-
mal and our desired level of significance is α = 0.05, our decision rule
should be: Reject H0 if |z| > 1.96 = qnorm(.975) here.
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• Value of test statistic and decision: We have

σp̂1−p̂2 ≈

√
p̂1(1− p̂1)

n1

+
p̂2(1− p̂2)

n2

≈ 0.007

and the value of our test statistic is

z =
p̂1 − p̂2

σp̂1−p̂2
= 2.122016

> x1<-6125

> x2<-5244

> n1<-9380

> n2<-8224

> p1<-x1/n1

> p2<-x2/n2

> sigma<-sqrt((p1*(1-p1)/n1)+(p2*(1-p2)/n2))

> sigma

[1] 0.007228579

> z<-(p1-p2)/sigma

> z

[1] 2.122016

> 2*(1-pnorm(z))

[1] 0.03383639

So we reject H0 in this case and conclude that the difference between the
completion percentages is significant using a 5% level of significance. (Of
course statistical significance is not always the same as real life signifi-
cance).

• p value The p value of our data is P (z > 2.122016) + P (z < −2.122016)
= 2*pnorm(-2.122016) ≈ 0.034.

Testing in R We can use the prop.test() function in R to test our hypothesis
that two proportions are equal. We use the command prop.test(x, n, al-

ternative = "two.sided") where x = (x1, x2) the counts in both samples,
n = (n1, n2) the sample sizes and alternative gives the nature of the test.

> prop.test(c(6125, 5244), c(9380, 8224), alternative="two.sided", correct=FALSE)

19



2-sample test for equality of proportions without continuity

correction

data: c(6125, 5244) out of c(9380, 8224)

X-squared = 4.5076, df = 1, p-value = 0.03375

alternative hypothesis: two.sided

95 percent confidence interval:

0.001171406 0.029506914

sample estimates:

prop 1 prop 2

0.6529851 0.6376459

Testing for equality for two population means

In this section we will consider two independent random samples from different
populations, Population 1 and Population 2. Let µ1 be the population mean for
a particular variable for Pop. 1 and let µ2 be the the population mean for the
same variable for Pop. 2. We wish to compare the means µ1 and µ2. We will
test the hypothesis that the difference between the means is 0 i.e. µ1 − µ2 = 0.
We will use the difference between the sample means, x̄1−x̄2 to make a decision.

Sampling Distribution of x̄1 − x̄2.

Assumptions:

• We have chosen two random samples in an independent manner of size n1

and n2, from Populations 1 and 2 respectively.

• The populations are both normally distributed.

• We will assume that the variances in both populations are equal (one
would use a different estimate of variance otherwise).

Variations in these assumptions require variations in the nature of the test,
however for large samples sizes, the test shown below can almost always be
used.

Under these assumptions, we can show that the test statistic

t =
(x̄1 − x̄2)√
S2
p

(
1
n1

+ 1
n2

)
(where x̄1 and x̄2 are the means from the respective samples, S2

p =
(n1−1)S2

1+(n2−1)S2
2

n1+n2−2

and S2
1 and S2

2 are the sample variances of the respective samples) has a t dis-
tribution with n1 + n2 − 2 degrees of freedom.
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OneTailed

Left Tailed Left Tailed Two Tailed Test
Null Hypothesis H0 : µ1 − µ2 = 0 H0 : µ1 − µ2 = 0 H0 : µ1 − µ2 = 0

Alternative Hypothesis Ha : µ1 − µ2 < 0 Ha : µ1 − µ2 > 0 Ha : µ1 − µ2 6= 0

Level of Significance α α α

Level of Confidence (1− α)100% (1− α)100% (1− α)100%

Test Statistic : t = (x̄1−x̄2)√
S2
p

(
1
n1

+ 1
n2

) t = (x̄1−x̄2)√
S2
p

(
1
n1

+ 1
n2

) t = (x̄1−x̄2)√
S2
p

(
1
n1

+ 1
n2

)

S2
p =

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2 S2
p =

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2 S2
p =

(n1−1)S2
1+(n2−1)S2

2

n1+n2−2

Distribution t(n1 + n2 − 2) t(n1 + n2 − 2) t(n1 + n2 − 2)

Rejection Region t < −tα t > −tα t < −tα
2
or t > tα

2

where tα is where tα is where tα
2
is

chosen so that chosen so that chosen so that
P (t > tα) = α P (t > tα) = α P (t > tα

2
= α

2 )

P Value P (t < observed value) P (t > observed value) 2P (t > |observed value|)

Example: Did my 12 week training program make a difference to my
race time? The following data show my times for 30 one mile races prior to
my 12 week training program and the times for 30 one mile races after my 12
week training program.

Before training program (mean x̄1 = 4.98303):
{4.994, 5.08, 5.145, 5.066, 5.032, 4.906, 4.786, 5.245, 4.871, 4.909, 4.934, 4.761,
4.787, 4.818, 4.995, 4.837, 4.947, 5.028, 4.760, 5.078, 5.167, 4.962, 5.036, 4.989,
4.871, 5.262, 5.096, 5.150, 4.963, 5.016}

After training program (mean x̄2 = 4.60493):
{4.490, 4.584, 4.466, 4.517, 4.462, 4.535, 4.520, 4.355, 4.427, 4.676, 4.901, 4.551,
4.548, 4.46, 4.648, 4.488, 4.480, 4.650, 4.783, 4.755, 4.566, 4.741, 4.873, 4.947,
4.721, 4.520, 4.580, 4.470, 4.584, 4.850}

Is the difference in these means significant at a level of significance equal to .01?

• Null and Alt. Hyp. H0: µ1 − µ2 = 0, H1: µ1 − µ2 > 0.
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• Test Statistic and distribution:

t =
(x̄1 − x̄2)√
S2
p

(
1
n1

+ 1
n2

) where S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.

Distribution: t distribution with n1 +n2−2 degrees of freedom, n1 = n2 =
30.

• Decision Rule: Reject H0 the observed value of t is greater than
qt(.99, df= 58) ≈ 2.392377.

• Calculate statistic and make decision: S2
1 = 0.0188621, S2

2 =
0.02356931,
S2
p = (29)0.0188621+(29)0.02356931

58
= 0.0212157

t = (4.98303− 4.60493)/
√

0.02121571( 2
30

) = 10.05364.

Here we reject the null hypothesis and conclude that the 12 week training
program made a difference with a 99% level of confidence.

• p value 1-pt(10.05365, df=58) = 1.265654/1014.

Using R to test a hypotheisis about difference between two means:
Here we use t.test(x, y, alternative="greater", var.equal=TRUE), where
x and y are the data sets in question and we set our alternative hypothesis appro-
priately. We can set var.equal to either TRUE or FALSE depending on whether
we believe the variances in the populations are equal or not respectively.

> bf<-c(4.994, 5.08, 5.145, 5.066, 5.032, 4.906, 4.786,

+ 5.245, 4.871, 4.909, 4.934, 4.761, 4.787, 4.818,

+ 4.995, 4.837, 4.947, 5.028, 4.760, 5.078, 5.167, 4.962,

+ 5.036, 4.989, 4.871, 5.262, 5.096, 5.150, 4.963,

+ 5.016)

> af<-c(4.490, 4.584, 4.466, 4.517, 4.462, 4.535, 4.520,

+ 4.355, 4.427, 4.676, 4.901, 4.551, 4.548, 4.46, 4.648,

+ 4.488, 4.480, 4.650, 4.783, 4.755, 4.566,

+ 4.741, 4.873, 4.947, 4.721, 4.520, 4.580, 4.470,

+ 4.584, 4.850)

> qt(.99, df= 58)

[1] 2.392377

> n1<-length(bf)

> n2<-length(af)

> barx1<-mean(bf)

> barx1
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[1] 4.983033

> barx2<-mean(af)

> barx2

[1] 4.604933

> spsquare<-((n1-1)*((sd(bf))^2) + (n2-1)*((sd(af))^2))/(n1+n2-2)

> spsquare

[1] 0.0212157

> s<-sqrt(spsquare*((1/n1)+(1/n2)))

> t<-(barx1-barx2)/s

> t

[1] 10.05365

> 1-pt(10.05365, df=58)

[1] 1.265654e-14

> t.test(bf,af,alternative="greater",var.equal=TRUE, correct=FALSE)

Two Sample t-test

data: bf and af

t = 10.054, df = 58, p-value = 1.272e-14

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

0.3152358 Inf

sample estimates:

mean of x mean of y

4.983033 4.604933
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