
TOPIC 10: BASIC PROBABILITY AND THE HOT HAND

1. The Hot Hand Debate

Let’s start with a basic question, much debated in sports circles: “Does the Hot Hand really exist?”. A
number of studies on this topic can be found in the literature. A summary of the history of the debate may
be found here. A seminal paper by Vallone, Gillovich and Tversky, published in 1985, found no evidence of
the hot hand in basketball claiming that the belief stems from a tendency for fans and athletes to misjudge
the length of streaks that one might expect from randomly generated data [2]. A more recent study by
Bocskocsky, Ezekowitz, and Stein found statistically significant evidence of a hot hand effect in basketball
when they adjusted for the level of difficulty of the shots taken by players and the response of the defense
when a player was perceived to have the hot hand. A recent study by Zweibel and Green also finds evidence
of the hot hand in baseball.

The interpretation of the question tends to vary widely; the definition of the hot hand, whether evidence
for it should be observable in performance statistics or whether we should also incorporate changes in factors
influencing performance in our observations, and whether we are asking the question about all players or
just one should all be agreed upon before exploring the question itself. Rather than give an answer of yes
or no to the question, we will help you develop some methods of exploration of the question through basic
probability.

Our interpretation of the basic assumption of the “hot hand” will be that the probability that a player
will succeed at a task (which is repeated) is higher if the task has resulted in success rather than failure on
the previous try. Sometimes the hypothesis is that the probability of success is higher than normal after
a string of success of some specified length or after a recent increase in statistics measuring performance.
The tools developed below will be equally applicable to these hypotheses. The question quickly brings us
to the heart of the meaning of probability and opens our eyes to some of the common misjudgments in our
expectations. We will explore the question of what we should expect from data generated randomly and
learn how to decide if an individual player’s performance deviates significantly from that expectation.

2. Experiments and Sample Spaces

Almost everybody has used some conscious or subconscious estimate of the likelihood of an event hap-
pening at some point in their life. Such estimates are often based on the relative frequency of the occurrence
of the event in similar circumstances in the past and some are based on logical deduction. In this section
we will set up a framework within which we can assign a measure of the likelihood of an event occurring
(probability) in a way that reflects our intuition and adds clarity to help us with our calculations.

Definition 2.1. An Experiment is an activity or phenomenon under consideration. The experiment can
produce a variety of observable results called outcomes. The theory of probability makes most sense in the
context of activities that can be repeated or phenomena that can be observed a number of times. We call each
observation or repetition of the experiment a trial.

Examples
(1) Flip a fair coin and observe the image on uppermost face (heads or tails).
(2) Flip a fair coin three times and observe the resulting sequence of heads (H) and tails(T).
(3) Rolling a fair six sided die and observing the number on the uppermost face is an experiment with

six possible outcomes; 1, 2, 3, 4, 5 and 6.
(4) Take a penalty shot in soccer and observe whether it results in a goal or not.
(5) Rolling a six sided die and observing whether the number on the uppermost face is even or odd is

an experiment with two possible outcomes; “even” and “odd”.
1

http://www.gsb.stanford.edu/insights/jeffrey-zwiebel-why-hot-hand-may-be-real-after-all
http://www.sloansportsconference.com/wp-content/uploads/2014/02/2014_SSAC_The-Hot-Hand-A-New-Approach.pdf
http://www.gsb.stanford.edu/faculty-research/working-papers/hot-hand-fallacy-cognitive-mistakes-or-equilibrium-adjustments
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(6) Pull a marble from a bag containing 2 red marbles and 8 blue marbles and observe the color of the
marble.

Definition 2.2. A sample space for an experiment is the set of all possible outcomes of the experiment.
Elements of the sample space are sometimes simply called outcomes or if there is a risk of confusion they
may be called a sample points or simple outcomes.

In our above examples the sample spaces are given by
Experiment Sample Space

Flip a fair coin {Heads, Tails }
Flip a fair coin {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Roll a six-sided die and
observe number on uppermost face {1, 2, 3, 4, 5, 6 }

Take a penalty shot { Goal, No Goal }
Roll a six-sided die and

observe whether the number is even or odd { Even, Odd }
Pull a marble from a bag containing
2 red marbles and 8 blue marbles

and observe the color of the marble. {Red, Blue }
Note that the sample space depends not just on the activity but also on what we agree to observe. In cases
where there is any likelihood of confusion it is best to specify what the observations should be in order to
determine the sample space.
When specifying the elements of the sample space, S for an experiment, we should make sure it has the
following properties:

(1) Each element in the sample space is a possible outcome of the experiment.
(2) The list of outcomes in the sample space covers all possible outcomes of the experiment.
(3) No two outcomes in the sample space can occur on the same trial of the experiment.

3. Assigning probabilities to outcomes in a Sample Space

For most experiments, the outcomes of the experiment are unpredictable and occur randomly. The
outcomes cannot be determined in advance and do not follow a set pattern. Although we may not be able
to predict the outcome on the next trial of an experiment, we can sometimes make a prediction about the
proportion of times an outcome will occur if we run “many” trials of the experiment. We can make this
prediction using logic or past experience and we use it as a measure of the likelihood (the probability)
that the outcome will occur.

Example 3.1. If I flip a fair coin 1,000 times, I would expect to get roughly 500 heads and 500 tails, in
other words, I would expect half of the outcomes to be heads and half to be tails. This prediction is based
on logical deduction from the symmetry of the coin. In this case I would assign a probability of 1/2 to the
outcome of getting a head on any given trial of the experiment.

Example 3.2. If I roll a six sided precision cut die 6,000 times, I would expect to get a six on the uppermost
face about 1,000 times. This prediction is based on the logical deduction that all faces of the die are equally
limey to appear on the uppermost face when the die is thrown because of the symmetry of the die. In this
case, I would assign a probability of 1/6 to the outcome “6” on any given trial of the experiment.

Example 3.3. I could assign a measure of 0.496 to the likelihood or probability that LeBron James will make
the next field goad he attempts in a regular season game, based on his current career field goal percentage of
49.6% (on Feb 07 2015; click on the link to find his current FG%).

3.1. Reasoned vs. Empirical Probability. When we observe a number of trials of an experiment and
record the frequency of each possible outcome, the relative frequency of an outcome is the proportion
of times that it occurs. When we use the relative frequency as a measure of probability we are using
empirical evidence to estimate the likelihood of an event. The empirical probability calculated in this

http://insider.espn.go.com/nba/player/stats/_/id/1966/lebron-james
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way may not agree with our reasoned probability (see the law of large numbers below). Our measure
of the probability that LeBron James will make the next field goal he attempts is an example of such an
empirical estimate.

Activity 1: Can we guess what’s in the bag? We will have Student X leave the room. We will place 10
marbles in a bag. The marbles will be blue and yellow and we will know how many of each are in the bag.
Thus we will be able to use logical reasoning to deduce the probability of drawing a marble of a particular
color from the bag if that marble is drawn at random.
Student X will now return to the room and draw a marble at random from the bag, record its color and
return it to the bag. Student X will repeat the process 10 times and use the empirical evidence to guess
what proportion of marbles in the bag are blue and what proportion are yellow.

Hopefully the above activity has been useful in demonstrating that the two different methods of assigning
probabilities to the outcomes in a sample space, using logical deduction and using relative frequency, can
result in different probability assignments. A lack of understanding of this discrepancy often causes confusion.
However, if we use a large number of trials to determine relative frequencies, the discrepancy is likely to be
small.

The Law of large numbers says that if an experiment is repeated ”many” times, the relative frequency
obtained for each outcome approaches the actual probability of that outcome.

This means that if we have used (sound) logic to arrive at a probability for an outcome and if we run
our experiment “many” times, the relative frequency of the outcome should be “close” to our reasoned
probability. This of course raises many questions about the number of trials required to get a good estimate
etc... One needs to explore statistics in more detail in order to answer these questions thoroughly. For now
we will satisfy ourselves with the knowledge that both of our methods of calculating probability agree.

Example 3.4. The law of large numbers says that if student X above were to repeat the process of drawing
marbles from the bag and replacing them 1,000 times, we would expect the relative frequency of each color to
reflect the proportion of marbles in the bag that are of that color.

3.2. Simulating Experiments. We can use the following applet developed at The University of Alabama
in Huntsville to explore relative frequencies and later to explore the sequences of outcomes resulting from
many trials of the same experiment.
A Useful Simulation Open the applet Flipping a Coin. To simulate flipping a coin 10 times, set n = 1
to indicate that you are flipping a single coin, set p = .5 to indicate that it is a fair coin, set Y = Number
of heads and set the “Stop” button at Stop 10 .

http://www.math.uah.edu/stat/applets/BinomialCoinExperiment.html
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Each simulation of a trial of the experiment(one flip of the coin) will show a value for Y (in the column
labelled Y ) in the box on the lower left. A value of Y = 0 will mean a tail has been observed and a value of
Y = 1 will mean that a head has been observed. The trial number is listed in the column labelled Run.
The actual probability (reasoned) of a head and a tail (both 1/2 in this case) are presented in two ways on
the right. The probabilities themselves are shown in the lower right hand box, next to the corresponding
values of Y in the column labelled Dist. Above that we have a pictorial representation of the probabilities
shown as a bar graph, where a bar (in blue) centered on each outcome has height equal to the probability
of the outcome.
As you increase the number of trials (either one by one using the play button or fast forward to run all of
them), the result of each trial will appear in the box on the lower left and the relative frequency of each
outcome will be updated in the column labelled data on the lower right. The relative frequency of each
outcome will also be represented on the upper right as a bar centered on the outcome with height equal to
the relative frequency.

To reset the simulation, click on the reset button

Activity 2: Law of Large Numbers To demonstrate the law of large numbers, run a simulation of
flipping a fair coin 1000 times, and compare the relative frequencies of heads and tails to that of the
reasoned probabilities (each equal to 1/2). (You can watch the relative frequencies change as the simulation
progresses on the graph of under data on the right.)

Activity 3: The Chaos of Small Numbers To demonstrate the problems with using relative frequency
from small samples as an estimate of the probability of an outcome, run the above simulation of flipping a
fair coin 10 times and record the relative frequency. Then press the reset button and repeat the procedure
10 times. You should observe a variety of relative frequencies.

Simulation # 1 2 3 4 5 6 7 8 9 10
Rel Freq. Tails (Y = 0)
Rel Freq. Heads (Y = 1)
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Activity 4: How do runs in the data generated randomly compare with our expectations?
Lets assume that a basketball player has a fifty percent chance of getting a basket each times he/she shoots
and if he/she shoots 10 times in a row. Repeat the procedure in part (b) but this time record the sequence
of baskets and misses below for each simulation, with 1 representing a basket and a 0 representing a missed
shot. Note the variation in the pattern of runs or streaks of baskets and misses in the data. This should
demonstrate that streaks of success do not necessarily indicate that a player has a “hot hand”, they may
just be due to random variation.

Simulation # 1 2 3 4 5 6 7 8 9 10
Trial 1: Y value
Trial 2: Y value
Trial 3: Y value
Trial 4: Y value
Trial 5: Y value
Trial 6: Y value
Trial 7: Y value
Trial 8: Y value
Trial 9: Y value
Trial 10: Y value

Now that we have discussed the two methods of assigning probabilities to outcomes, lets get back to the
details of doing so and the methods of presenting those probabilities.

3.3. Rules for assigning probabilities and probability distributions. Let S = {e1, e2, . . . , en} is the
sample space for an experiment, where e1, e2, . . . , en are the simple outcomes. To each outcome, ei, 1 ≤ i ≤ n,
in the sample space, we assign a probability which we denote by P (ei). As discussed above, the probability
assigned to an outcome should reflect the relative frequency with which that outcome should occur in many
trials of the experiment. By the law of large numbers, probabilities assigned as a result of logical reasoning
should be almost identical to those derived from data for a large number of trials of the experiment. Since
the relative frequency of an outcome in a set of data is the proportion of the data corresponding to that
outcome, the sum of the relative frequencies of all outcomes must add to 1. With this in mind, we respect the
following basic rules when assigning probabilities to outcomes in a finite sample space S = {e1, e2, . . . , en}:

(1) 0 ≤ P (ei) ≤ 1, 1 ≤ i ≤ n
(2) P (e1) + P (e2) + · · ·+ P (en) = 1.

We can present our list of the probabilities (called the probability distribution) in table format or as a
bar chart. In the table format, the probabilities are listed alongside the corresponding outcome in the sample
space. When displaying probabilities on a bar chart, we list the outcomes on the horizontal axis and center
a rectangular bar above each outcome, with height equal to the probability of that outcome. By making
each bar of equal width, we ensure that the graph follows the area principle in that the proportion of
the area of the graph devoted to each outcome is is equal to its probability.

Example 3.5. If we flip a fair coin and observe whether we gat a head or a tail, then using logic, we assign
a probability of 1/2 to heads and a probability of 1/2 to tails. We can represent this in a table or on a graph
as shown below:
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Outcome Probability
H 1/2
T 1/2

H T

0.5

Example 3.6. If our experiment is to observe LeBron James take his next shot in a basketball game, we
might use the empirical evidence we have ( an overall field goal percentage of 49.6%) to estimate his probability
of success. This gives us the following probability distribution:

LeBron James
Outcome Probability

Basket 0.496
Miss 0.504

H T

0.496

Example 3.7. If our experiment is to observe Amir Johnson take his next shot in a basketball game, we
could use his career field goal percentage ( or his field goal percentage over the last ten games) to estimate
his probability of success on his next shot. We can find the appropriate statistics here: Amir Johnson

Amir Johnson
Outcome Probability

Basket
Miss

Activity 5: Can we perceive the difference between two players of differing abilities by com-
paring their performance on ten shots in a row? To explore this we will work in pairs. We will assume
that we have two basketball players, Player A with a probability of success equal to 0.5 on each shot and
Player B with a probability of success equal to 0.6 on each shot. We will model the situation where each
player takes 10 shots in a row where their probability of success remains constant on each shot. One student
(let’s call him/her Student 1 to be creative) will (secretly) model ten throws by Player A and Player B on
our applet Flipping a Coin using the settings shown below:

http://espn.go.com/nba/player/_/id/2769/amir-johnson
http://www.math.uah.edu/stat/applets/BinomialCoinExperiment.html


HOT HAND 7

Player A Player B

Student 1 will write down both sequences of baskets (an outcome of Y = 1 gives a basket) and misses(
Y = 0) and present them to the other student, Student 2. Student 2 will then guess which player generated
which sequence of outcomes and after they have guessed Student 1 will reveal which sequence belongs to
which player.

You should repeat the process 5 times to see how many times the guess is accurate out of 5.
Note You are likely to observe that this model does not take into account the levels of difficulty of shots
that players might take throughout the course of a game. We will talk about this issue later.

This should confirm the difficulty of perceiving differences in ability (and probability) from small data
samples and make us wary of jumping to conclusions from short term information.

Pitfalls to avoid when making predictions with probability
• When estimating the overall probability of an outcome with relative frequencies, it is best to avoid

using small data sets.
• If the probability of one outcome is larger than another, it does not guarantee that the more probable

outcome will occur on the next trial of the experiment, rather it means that in over many trials of
the experiment, the more likely outcome will have a greater relative frequency.

• It is very difficult to determine an athlete’s ability or success rate from a small sample of data. In
particular it is difficult to determine if a player’s success rate has changed from short term data.

3.4. Equally Likely Outcomes. Now let’s get back to the hot hand question. Note that the question
bases the prediction for future success on the fact that a run of successes has just occurred as opposed to
just an abnormally large proportion of success’. To explore the question of the hot hand further, we need
(for the purposes of comparison) to get some idea of the expected frequency of various lengths of runs of
success’ that should be expected in data generated randomly. We start our exploration by using reasoning
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to derive the probability of runs of different length. Let’s start with the simple experiment of flipping a coin
several times.

Example 3.8. We first assign probabilities to the outcomes of an experiment which we have neglected. We
saw that if we flip a fair coin three times and observe the sequence of heads and tails, we get 8 outcomes in
our sample space:

{HHH, HHT, HTH,HTT, THH, THT, TTH, TTT}.

To assign probabilities to each outcome, we rea-
son that we would expect all of these outcomes to be
equally likely because of the symmetry of the coin.
Thus since all 8 outcomes get equal probabilities and
those probabilities must add to 1, each outcome should
be assigned a probability of 1/8. Thus our proba-
bility table or distribution is the one shown on the
right.

Outcome Probability
HHH 1/8
HHT 1/8
HTH 1/8
HTT 1/8
THH 1/8
THT 1/8
TTH 1/8
TTT 1/8

We pull out this general principle for future use:

Equally Likely Outcomes If an experiment has N outcomes in its sample space and all of these outcomes
are equally likely, then each outcome has a probability of 1/N .

The above reasoning extends to flipping a coin any number of times.

Example 3.9. If we flip a coin 6 times, we get 26 = 64 equally likely outcomes.

We can see this as follows. If we were to construct a sequence of heads and tails of length 6, we could do
so in 6 steps:
Step 1 choose the first letter in the sequence, we have two choices H and T and thus two possible starts to
the sequence

H

or
T

Step 2: Given that we have already decided on the first letter, we choose a second letter, giving us 2 choices
for each of the above possibilities and thus 22 = four possibilities for what the sequence might look like after
two steps:

H H

H T

T H

T T

Step 3: Choose the third letter; we see that at the end of this step, we have double the possibilities from the
end of the previous step, since we can insert either H or T in the third slot for each. Thus we have 23 = 8
possible starts to the sequence after three steps.
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H H H H H T
H T H H T T
T H H T H T
T T H T T T

The pattern continues thus with the number of possibilities doubling on each step. By the end of the sixth
step, we have completed the sequence and there are 26 = 64 possible outcomes. Since all of these sequences
are equally likely and they account for all outcomes of the sample space, we assign a probability of 1/64 to
each one.

In particular, this means that the probability of getting a sequence consisting entirely of heads or a run
of eight heads is HHHHHH is 1/64 as is the probability of getting a sequence consisting entirely of tails
TTTTTT or the probability of getting a sequence of the form HHHHHT .

By generalizing the above analysis to an experiment where we flip a coin N times, we see:

If I flip a fair coin N times, the probability of getting N heads is 1/2N . Likewise the probability
of getting a sequence of N − 1 heads followed by a tail is 1/2N .

Activity 6: Before you go any further, make up and write down a sequence of Heads (H) and Tails (T)
that you think might result from flipping a coin 100 times in the space below. We will check later how well
it matches what we might expect in a sequence that is generated randomly.

3.5. Modelling runs of success’ for an athlete with a 50% chance of success. We would like to get
a handle on roughly how many runs of successes of a given size to expect in a large set of data
generated randomly. This should help us to detect unusual patterns in athletic data by comparison. Our
random model is still limited to situations where the probability of success is equal to the probability of
failure, we will address this issue after we consider conditional probability in the next section.

Consider a basketball player who has a 50% chance of making a basket each time they take a shot. Over the
course of a season, a major league basketball player might take 800 shots. Instead of thinking of this as one
big experiment of 800 shots in a row, we will look at it from a different perspective and think of the player
as repeating the following experiment many times:
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Experiment A The player shoots until the first time he/she misses a shot and then the experiment is over.
The outcomes observed from this experiment will be all possible strings of Baskets (B) followed by a single
Miss (M). Thus the sample space looks like:

{M, BM, BBM, BBBM, BBBBM, BBBBBM, . . . }

The “. . . ” symbol in mathematics translates to “etcetera” in english. Notice that this is an infinite sample
space; it is conceivable that the unbroken run of baskets could go on forever. Because of our analysis above
on coin flipping, we can sign a probability to each of these outcomes. The probability of getting N baskets
followed by a miss is 1

2N+1 . The probability distribution for this experiment is shown below:

Length of
run of Baskets Outcome Probability

0 M 1/2
1 BM 1/4
2 BBM 1/8
3 BBBM 1/16
...

...
...

N BB . . . B︸ ︷︷ ︸
N times

M 1
2N+1

...
...

...
0 1 22 3 4 5 6 7 8 9 10

Number of Baskets

0.1

0.2

0.3

0.4

0.5
Probability

Number of Baskets

We now model the string of baskets and misses that a basketball player with a 50% of success might generate
throughout the season assuming that the player maintained a constant 50% chance of success on each shot.
Instead of looking at this as repeated trials of the experiment where we flip a coin once (which gives no
information of the length of runs we might expect), we look at the player’s sequence of shots as repeated
trials of experiment A, whose probability distribution gives us some idea of how frequently we might expect
runs of various lengths to occur. The resulting string of baskets and misses for the player is obtained by
concatenating the results of the consecutive trials of the above experiment.

Example 3.10. If a player ran five consecutive trials of this experiment, getting runs of baskets of length 3,
2, 0, 0, 1 in that order, then the resulting string of baskets and misses for the player would be BBBMBBM-
MMBM. Note that the player has taken 11 shots at this point and the number of trials of the
experiment is not equal to the number of shots taken. In fact this would only be true if the player
missed all of his/her shots.

What can we expect in a large number of trials? Recall the Law of Large Numbers above that
says our reasoned probability of an outcome should be close to the the relative frequency of the outcome in
a large number of trials of the experiment. Thus if a player repeated this experiment 400 times, we would
expect about 1/2 of those trials (200) to result in a run of baskets of length 0 (M). We would expect about
1/4 of the trials (100) to result in a run of baskets of length 1 (BM) etc.... .
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Length of run of Baskets Outcome Expected Number
0 M 1

2 × 400 = 200

1 BM 1
4 × 400 = 100

2 BBM 1
8 × 400 = 50

3 BBBM 1
16 × 400 = 25

...
...

...
N BB . . . B︸ ︷︷ ︸

N times

M 1
2N+1 × 400

...
...

...

Note that the number of runs of baskets of any given type has to be a whole number; 0, 1, 2, 3, . . . . If the
expected number of runs of baskets of a given type turns out to be something other than a whole number,
we might adjust the expected number by rounding off to the nearest whole number.

Notice that for a run of 9 baskets (BBBBBBBBBM), the expected number of outcomes of this type in 400
trials is 400 × 1

210 ≈ 0.3906 which is less than 1 (the symbol “≈” in mathematics translates to the word
“approximately” in english). In this case, we might adjust our expectations to expect no runs of length 9.

The Longest Run Note that if a player repeated Experiment A 400 times, we expect that about half of
the 400 outcomes to have 1 basket or more (since roughly half of the outcomes should be basket runs of
length 0 (M)). We expect about a quarter of the 400 outcomes to have 2 baskets or more, about 1/8 of the
400 outcomes to have 3 baskets or more . . . about 1/2N of the 400 outcomes to have N baskets or more.
At some point, we will find a final value of N for which 1

2N × 400 rounds to 1, indicating that we would
expect only one run of length N or greater in the data. This gives us a rough estimate that the longest run
of baskets should have length N roughly. By trial and error, we see that

0.78 ≈ 400
29

and 0.39 ≈ 400
210

Rounding off, we see that he longest run in 400 trials of Experiment A should have length roughly
equal to 9.

(Those who know a little about logarithms will see that the longest run should have length approximately
equal to L, where L is the solution to the equation

1
2L
× 400 = 1

The solution to this equation is given by L = log2400, we can round off to the nearest integer to get the
expected length of the longest run. )
The longest run in M trials of Experiment A Similarly, if we run Experiment A R times, we expect
the longest run to have length approximately equal to log2R or the largest integer L for which 1

2L ×R rounds
off to 1.

Activity 7: Comparing Data to Expectations

Randomly generated data Lets look at some data generated randomly to see how it compares with our
predictions. The following string of data was generated by the Excel file Trials.xlsx. We used Excel to
simulate 50 trials of this experiment which resulted in 86 shots. In this case, we would expect about twenty
five runs of baskets of length 0, twelve runs of baskets of length 1, six runs of baskets of length 2, theee runs
of baskets of length 3, one run of baskets of length 4 and none higher than that. Keep in mind however
that the law of large numbers just gives us a rough idea of what to expect and in this case we are looking
at a relatively low number of trials. Also, just because the chances of a string of 10 baskets in a row are
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slim, we cannot rule it out, any outcome with a positive probability can happen, no matter how small that
probability is.

The data output is shown below with the trial number on the left and the outcome on the right. Count the
number of runs of Bastes of each type and check how well it agrees with our predictions. (Note a run of
baskets of length 0 corresponds to a trial resulting in a single miss).

(b) Check the sequence of heads and tails that you made up above in the Activity 6. How well do the
number of runs of baskets of each type compare with what you would expect in a randomly generated
sequence.
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(c) Since LeBron James’ FG% is close to 0.5, we would expect a sequence of Field Goal shots by him to be
resemble a sequence generated randomly if his probability of making a shot remains relatively stable from
shot to shot. The following sequence of baskets and misses was taken from the shot chart on ESPN for seven
consecutive games for LeBron James. ( Game 1 , Game 2 , Game 3 , Game 4 , Game 5 , Game 6 , Game 7)

Check if the number of runs of baskets of each length is comparable to what you might expect from a
randomly generated sequence. I have divided the data into outcomes from trials of an experiment of Type
A above so that you can count the runs of length 0 easily and you can see that there were 67 trials (not
counting the final basket of the last game since it is not a complete outcome).

Trial 1 2 3 4 5 5 5 5 6 6 7 8 8 8 9 9 10 11 12 13
Outcome M M M M B B B M B M M B B M B M M M M B

Trial 13 13 14 14 15 16 17 17 18 19 20 20 21 22 22 22 22 22 23
Outcome B M B M M M B M M M B M M B B B B M B

Trial 23 24 25 25 25 26 26 26 27 28 28 28 29 29 30 30 31 32 32
Outcome M M B B M B B M M B B M B M B M M B B

Trial 32 32 32 32 33
Outcome B B B M M

Trial 34 34 35 35 35 36 36 36 37 38 39 40 41 42 43 43 44 45 46
Outcome B M B B M B B M M M M M M M B M M M B

Trial 46 47 47 47 47 47 47 48 49 49 49 49 49 50 51 52 52 52 53 54
Outcome M B B B B B M M B B B B M M M B B M M B

Trial 54 55 56 57 57 57 57 58 58 59 60 60 60 60 61 62 63 63 63
Outcome M M M B B B M B M M B B B M M M B B B

Trial 63 64 64 65 66 67 68
Outcome M B M M M M B

http://espn.go.com/nba/shotchart?gameId=400578968
http://espn.go.com/nba/shotchart?gameId=400578992
http://espn.go.com/nba/shotchart?gameId=400579003
http://espn.go.com/nba/shotchart?gameId=400579010
http://espn.go.com/nba/shotchart?gameId=400579035
http://espn.go.com/nba/shotchart?gameId=400579039
http://espn.go.com/nba/shotchart?gameId=400579058
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3.6. What to expect when we flip a coin K times. Notice that when the basketball player (with a
50% chance of making every shot) performs R trials of Experiment A above, he/she usually ends up with a
lot more than R shots. We saw that 50 trials of Experiment A led to 74 shots in the randomly generated
sample in Activity 7. In fact R trials of Experiment A would only lead to R coin flips if every shot was a
miss. Since each trial of Experiment A ends with a miss, the number of completed trials of Experiment A
in a set of data is equal to the number of Misses in the data.

If we flip a coin K times, where K is very large, we would expect (by the law of large numbers) that
roughly K/2 of the outcomes would be Tails. Likewise, if a player with a 50% chance of making a basket on
every shot shoots K times where K is large, roughly K/2 of the shots will result in Misses. Therefore the
player will have run roughly K/2 trials of Experiment A.

Below we show the distribution of runs of baskets we should expect from the experiment: “Flip a coin K
times”.

Experiment: Flip a coin K times
Length of run of Baskets Outcome Expected Number

1 B 1
4 ×

K
2

2 BB 1
8 ×

K
2

3 BBB 1
16 ×

K
2

...
...

...
N BB . . . B︸ ︷︷ ︸

N times

1
2N+1 × K

2

...
...

...

Example 3.11. If a player with a 50% chance of success on every shot takes 100 shots in a row, how many
runs of baskets of length 4 would you expect to see in the data?

The longest run of heads in K flips of a coin: (see [1] for further development of this topic.) If a coin
is flipped K times, we would expect the length of the longest run to be around log2(K

2 ) or the largest value
of L for which 1

2L

(
K
2

)
rounds to a whole number bigger than 0.

Example 3.12. If a player with a 50% chance of success on every shot takes 100 shots in a row, what is
the longest run of data (roughly) that you expect to see in the data?

Example 3.13. In the above example of 128 shots taken by LeBron James, what is the longest run of baskets
we might expect ( using the fact that the overall FG% for LeBron James was approximately 0.5 at the time
of these games)? What is the longest run of baskets in the data?
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3.6.1. What about Tails? In the above discussion, our focus was on the length of runs of heads over the
course of several flips of a coin. A little reflection on what we have done will show that since heads and
tails are equally likely on each coin flip, we can expect exactly the same distribution of runs of tails over the
course of several coin flips as we did by heads; that is we expect 1

2N+1 × K
2 runs of tails of length N if we

flip a coin K times and we expect the longest run to be of length close to log2(K
2 ).

Example 3.14. In the above example of 128 shots taken by LeBron James, what is the longest run of misses
we might expect ( using the fact that the overall FG% for LeBron James was approximately 0.5 at the time
of these games)? What is the longest run of misses in the data?
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