1.3 New Functions From Old

Combinations of Functions

A common way to create a new function is to combine two functions f and g using arithmetic operations: (f+g)(x) = f(x)+g(x), (f-g)(x) = f(x)-g(x), (fg)(x) = f(x)g(x), (f/g)(x) = f(x)/g(x).

A more interesting way to combine functions is to put one function *inside* another. For example, the function $h(x) = (x^2 + 4)^{1/3}$ may be thought of and the combination or **composite** of the functions $f(x) = x^2 + 4$ and $g(x) = x^{1/3}$. The function f(x) is inside the function g(x), $h(x) = g(x^2+4) = g(f(x))$, and we use the special notation $h = g \circ f$ which is read "g composed with f." We may think of the function h as a sequence of operations: x is input into f which outputs f(x); then f(x) is input into g and the final output is h(x) = g(f(x)). Note that the order of the operations is important. In general, $g \circ f \neq f \circ g$. In fact, in our example, $f \circ g(x) = f(g(x)) = f(x^{1/3}) = (x^{1/3})^2 + 4 = x^{2/3} + 4 \neq (x^2+4)^{1/3} = g \circ f(x)$. A function may be composed with itself. For example, using the above functions, $f \circ f(x) = f(x^2+4) = (x^2+4)^2 + 4 = x^4 + 8x^2 + 20$ and $g \circ g(x) = g(x^{1/3}) = (x^{1/3})^{1/3} = x^{1/9}$. **Note:** The domain of the function $(f \circ g)(x)$ is the set of x values in the domain of g with the property

that g(x) is in the domain of f, i.e. $D_{f \circ g} = \{x \in D_g | g(x) \in D_f\}.$

Example: $f(x) = \sqrt{x}$, $g(x) = x^3 - 1$ (f+g)(x) =domain:

 $\frac{f}{g}(x) =$ domain:

 $\frac{g}{f}(x) =$ domain:

 $f \circ g(x) =$ domain:

 $g \circ f(x) =$ domain: $x \ge 0$

 $f \circ f(x) =$ domain:

 $g \circ g(x) =$

Example: $f(x) = \frac{x}{x+1}, g(x) = \frac{2}{x}$ $f \circ g(x) =$ domain:

 $g \circ f(x) =$ domain:

 $f \circ f(x) =$ domain:

 $g \circ g(x) =$ domain:

Notice how the domain is not determined by the simplified expression for the composition of the functions.

Example: Express $h(x) = \sqrt{x-1}$ as a composition of two functions $f \circ g$ and find its domain.

Transformations of Graphs

A graph can be shifted horizontally or vertically by adding/subtracting constants to x or to y = f(x).

Vertical and Horizontal Shifts

 $y = f(x) + c \quad : \quad \text{shift } y = f(x) \ up \ \text{by } c$ $y = f(x) - c \quad : \quad \text{shift } y = f(x) \ down \ \text{by } c$ $y = f(x + c) \quad : \quad \text{shift } y = f(x) \ left \ \text{by } c$ $y = f(x - c) \quad : \quad \text{shift } y = f(x) \ right \ \text{by } c$

Example:

Example: Express f(x) = |x - 1| as a piecewise defined function and sketch its graph.

A graph can be stretched/shrunk horizontally or vertically by multiplying x or y = f(x) by a positive constant. Multiplying by a negative constant will also reflect the graph through an axis.

Vertical and Horizontal Stretching and Reflecting

Suppose c > 1.

y = cf(x)	:	stretch $y = f(x)$ vertically by a factor of c
y = (1/c)f(x)	:	shrink $y = f(x)$ vertically by a factor of c
y = f(cx)	:	shrink $y = f(x)$ horizontally by a factor of c
y = f(x/c)	:	stretch $y = f(x)$ horizontally by a factor of c
y = -f(x)	:	reflect $y = f(x)$ through the x-axis
y = f(-x)	:	reflect $y = f(x)$ through the y-axis

Example: $y = \sin(x)$

Example Sketch the graph of $y = 2\sin(4x)$. We see that this is a graph similar to that of $y = \sin(x)$, except with period $2\pi/4 = \pi/2$ and twice the amplitude:

Example: Sketch the graph of $f(x) = 2 - \sin(4x)$

Example: $y = f(x) = \sqrt[4]{x}$

Example: Use the graph of $y = \sqrt{x}$ to obtain the graph of $y = 1 - 2\sqrt{x-3}$.