1.3 New Functions From Old

Combinations of Functions

A common way to create a new function is to combine two functions f and g using arithmetic operations: $(f+g)(x)=f(x)+g(x),(f-g)(x)=f(x)-g(x),(f g)(x)=f(x) g(x),(f / g)(x)=f(x) / g(x)$.

A more interesting way to combine functions is to put one function inside another. For example, the function $h(x)=\left(x^{2}+4\right)^{1 / 3}$ may be thought of and the combination or composite of the functions $f(x)=x^{2}+4$ and $g(x)=x^{1 / 3}$. The function $f(x)$ is inside the function $g(x), h(x)=g\left(x^{2}+4\right)=g(f(x))$, and we use the special notation $h=g \circ f$ which is read " g composed with f." We may think of the function h as a sequence of operations: x is input into f which outputs $f(x)$; then $f(x)$ is input into g and the final output is $h(x)=g(f(x))$. Note that the order of the operations is important. In general, $g \circ f \neq f \circ g$. In fact, in our example, $f \circ g(x)=f(g(x))=f\left(x^{1 / 3}\right)=\left(x^{1 / 3}\right)^{2}+4=x^{2 / 3}+4 \neq$ $\left(x^{2}+4\right)^{1 / 3}=g \circ f(x)$. A function may be composed with itself. For example, using the above functions, $f \circ f(x)=f\left(x^{2}+4\right)=\left(x^{2}+4\right)^{2}+4=x^{4}+8 x^{2}+20$ and $g \circ g(x)=g\left(x^{1 / 3}\right)=\left(x^{1 / 3}\right)^{1 / 3}=x^{1 / 9}$.
Note: The domain of the function $(f \circ g)(x)$ is the set of x values in the domain of g with the property that $g(x)$ is in the domain of f, i.e. $D_{f \circ g}=\left\{x \in D_{g} \mid g(x) \in D_{f}\right\}$.

Example: $f(x)=\sqrt{x}, \quad g(x)=x^{3}-1$
$(f+g)(x)=$
domain:
$\frac{f}{g}(x)=$
domain:
$\frac{g}{f}(x)=$
domain:
$f \circ g(x)=$
domain:
$g \circ f(x)=$
domain: $x \geq 0$
$f \circ f(x)=$
domain:
$g \circ g(x)=$

Example: $f(x)=\frac{x}{x+1}, g(x)=\frac{2}{x}$
$f \circ g(x)=$ domain:
$g \circ f(x)=$ domain:
$f \circ f(x)=$ domain:
$g \circ g(x)=$ domain:

Notice how the domain is not determined by the simplified expression for the composition of the functions.

Example: Express $h(x)=\sqrt{x-1}$ as a composition of two functions $f \circ g$ and find its domain.

Transformations of Graphs

A graph can be shifted horizontally or vertically by adding/subtracting constants to x or to $y=f(x)$.

Vertical and Horizontal Shifts

$y=f(x)+c \quad$: shift $y=f(x) u p$ by c
$y=f(x)-c \quad$: shift $y=f(x)$ down by c
$y=f(x+c) \quad$: shift $y=f(x)$ left by c
$y=f(x-c) \quad: \quad$ shift $y=f(x)$ right by c

Example:

$$
y=f(x)+1=x^{2}+1
$$ shift $u p$ by 1

$$
y=f(x+1)=(x+1)^{2}
$$

shift left by 1

shift right and down 1

Example: Express $f(x)=|x-1|$ as a piecewise defined function and sketch its graph.

A graph can be stretched/shrunk horizontally or vertically by multiplying x or $y=f(x)$ by a positive constant. Multiplying by a negative constant will also reflect the graph through an axis.

Vertical and Horizontal Stretching and Reflecting

Suppose $c>1$.
$y=c f(x) \quad: \quad$ stretch $y=f(x)$ vertically by a factor of c
$y=(1 / c) f(x) \quad$: shrink $y=f(x)$ vertically by a factor of c
$y=f(c x) \quad: \quad$ shrink $y=f(x)$ horizontally by a factor of c
$y=f(x / c) \quad$: stretch $y=f(x)$ horizontally by a factor of c
$y=-f(x) \quad: \quad$ reflect $y=f(x)$ through the x-axis
$y=f(-x) \quad: \quad$ reflect $y=f(x)$ through the y-axis
Example: $y=\sin (x)$

$$
y=\sin (2 x)
$$

shrink horizontally by 2

$$
y=2 \sin (x)
$$

stretch vertically by 2

Example Sketch the graph of $y=2 \sin (4 x)$. We see that this is a graph similar to that of $y=\sin (x)$, except with period $2 \pi / 4=\pi / 2$ and twice the amplitude:

Example: Sketch the graph of $f(x)=2-\sin (4 x)$

Example: $y=f(x)=\sqrt[4]{x}$

Example: Use the graph of $y=\sqrt{x}$ to obtain the graph of $y=1-2 \sqrt{x-3}$.

