Volumes by Cylindrical shells

Example Consider the solid generated by rotating the region between the curve $y=\sqrt{4-(x-3)^{2}}$ and the line $y=0$ (shown on the left below) about the y axis. The solid looks like the half doughnut shown on the right below below:

We see that in the example above it is difficult to apply the methods of the previous section to find the volume. Below we give a method, The shell method, which applies much more readily to this situation.
Volume of a shell A shell is a hollow cylinder such as the one shown below. The outer radius of the shell shown below is r_{2} and the inner radius is r_{1}. Since all cross sections of the shell are the same, the volume of the shell is the area of the base times the height, h. The base has area

$$
\pi r_{2}^{2}-\pi r_{1}^{2}=\pi\left(r_{2}-r_{1}\right)\left(r_{2}+r_{1}\right)=2 \pi \frac{\left(r_{2}+r_{1}\right)}{2}\left(r_{2}-r_{1}\right)=2 \pi r \Delta r
$$

where r is the midpoint of the interval $\left[r_{1}, r_{2}\right]$ and $\Delta r=\left(r_{2}-r_{1}\right)$. Therefore we have the volume of the shell shown below is

$$
V=2 \pi r h \Delta r, \quad \text { where } r=\frac{r_{1}+r_{2}}{2} .
$$

Let us consider the example given above :
Find the volume of the solid generated by rotating the region between the curve $y=\sqrt{4-(x-3)^{2}}$ and the line $y=0$ about the y axis.

The area of the region under the curve $y=\sqrt{4-(x-3)^{2}}$ and the line $y=0$ can be approximated using a midpoint approximation with $n=5$ approximating rectangles as shown below.

Recall that the base of a rectangle is a subinterval $\left[x_{i-1}, x_{i}\right]$ of length $\Delta x=\frac{5-1}{5}=4 / 5$. When we rotate each approximating rectangle about the y axis, it generates a solid which is a shell with inner radius x_{i-1}, outer radius x_{i} and height $f\left(x_{i}^{m i d}\right)=f\left(\frac{x_{i-1}+x_{i}}{2}\right)$, where $x_{i}^{m i d}=\frac{x_{i-1}+x_{i}}{2}$ is the midpoint of the interval $\left[x_{i-1}, x_{i}\right]$. The volume of this shell (generated by the approximating rectangle above the subinterval $\left.\left[x_{i-1}, x_{i}\right]\right)$ is

$$
V_{i}=2 \pi \frac{x_{i-1}+x_{i}}{2} \Delta x \cdot h=2 \pi \frac{x_{i-1}+x_{i}}{2} f\left(\frac{x_{i-1}+x_{i}}{2}\right) \Delta x .
$$

We can approximate the volume of the solid above by adding together the volumes of these shells:

9 We get

$$
V \approx \sum_{i=1}^{5} 2 \pi \frac{\left(x_{i}+x_{i-1}\right)}{2}\left(x_{i}-x_{i-1}\right) f\left(\frac{x_{i}+x_{i-1}}{2}\right)=\sum_{i=1}^{5} 2 \pi x_{i}^{m i d} f\left(x_{i}^{m i d}\right) \Delta x
$$

where $x_{i}^{m i d}$ is the midpoint of the interval $\left[x_{i-1}, x_{i}\right]$ and $\Delta x=x_{i}-x_{i-1}$. Following the same process with n approximating rectangles and n approximating shells, we get

$$
V \approx \sum_{i=1}^{n} 2 \pi x_{i}^{m i d} f\left(x_{i}^{m i d}\right) \Delta x
$$

and using limits we get

$$
V=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi x_{i}^{m i d} f\left(x_{i}^{m i d}\right) \Delta x=\int_{1}^{5} 2 \pi x f(x) d x=2 \pi \int_{1}^{5} x \sqrt{4-(x-3)^{2}} d x
$$

- In general, let R be the region between the curve $y=f(x) \geq 0$ and the lines $y=0$ (x axis), $x=a$ and $x=b$, where $0 \leq a<b$. Let S be the solid generated by revolving R around the y axis. The volume of S is given by

$$
V=\int_{a}^{b} 2 \pi x f(x) d x
$$

Example Let R denote the region enclosed by the curve $y=x^{3}$ and the lines $x=0, x=1$ and the x axis, $y=0$. Find the volume of the solid generated by rotating R about the y axis.

- Suppose $f(x) \geq g(x) \geq 0$ on the interval $[a, b]$, where $0 \leq a<b$. Let R be the region enclosed by the curves $y=f(x), y=g(x)$ and the lines $x=a$ and $x=b$. Let S denote the solid obtained by rotating the region R about the y axis. The Volume of S is given by

$$
V=\int_{a}^{b} 2 \pi x[f(x)-g(x)] d x
$$

Example Let R denote the region between the curves $y=x$ and $y=x^{2}$. Use the shell method to find the volume of the solid generated when R is rotated around the y axis.

Revolving around the line $x=c$.

- Let R be the region between the curve $y=f(x) \geq 0$ and the x axis, between the lines $x=a$ and $x=b$. Let S be the solid generated by revolving R around the line $x=c$ (parallel to the y axis) where $c \leq a<b$. The volume of S is given by

$$
V=\int_{a}^{b} 2 \pi(x-c) f(x) d x
$$

For $c \geq b>a$ we use the formula

$$
V=\int_{a}^{b} 2 \pi(c-x) f(x) d x
$$

Example Let R be the region between the curve $y=x^{2}$ and the lines $x=0(y$-axis $), x=1, y=0$. Let S be the solid generated by revolving R around the line $x=2$. Find the volume of S.

Shell method when revolving a function of y about the x axis.

- Let R be the region bounded by the curve $x=f(y)$ and the lines $x=0(y$-axis), $y=c$ and $y=d$, where $0 \leq c<d$. Let S denote the solid generated by revolving the region R around the x axis. The volume S is given by:

$$
V=\int_{c}^{d} 2 \pi y f(y) d y
$$

Example Let R be the region bounded by the curve $x=y^{3}$ and the lines $y=1, y=2$ and $x=0$ (the y -axis). Find the volume of the solid generated by rotating R about the x axis.

Disks vs Cylindrical shells: Deciding which to use

Region	Rotate about	Formula/Method
$\begin{gathered} y=f(x) \\ a \leq x \leq b \end{gathered}$	x - axis	$\int_{a}^{b} \pi[f(x)]^{2} d x$
$\begin{gathered} y=f(x) \\ a \leq x \leq b \end{gathered}$	y - axis	$\int_{a}^{b} 2 \pi x f(x) d x$
$\begin{gathered} x=f(y) \\ c \leq y \leq d \end{gathered}$	$y-\mathrm{axis}$	$\int_{c}^{d} \pi[f(y)]^{2} d y$ disks
$\begin{gathered} x=f(y) \\ c \leq y \leq d \end{gathered}$	x - axis	$\int_{c}^{d} 2 \pi y f(y) d y$ shells

Note: In the situations considered above, we integrate with respect to the independent variable in the definition of the function.

