Lecture 3 : Limit of a Function

Click on this symbol to view an interactive demonstration in Wolfram Alpha.

Limit of a Function

Consider the behavior of the values of $f(x) = x^2$ as x gets closer and closer ... and closer to 3.

Example Let $f(x) = x^2$. The table below shows the behavior of the values of $f(x)$ as x approaches 3 from the left and from the right.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x) = x^2$</th>
<th>x</th>
<th>$f(x) = x^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4.0</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>6.25</td>
<td>3.5</td>
<td>12.25</td>
</tr>
<tr>
<td>2.9</td>
<td>8.41</td>
<td>3.1</td>
<td>9.61</td>
</tr>
<tr>
<td>2.95</td>
<td>8.70</td>
<td>3.05</td>
<td>9.3</td>
</tr>
<tr>
<td>2.99</td>
<td>8.94</td>
<td>3.01</td>
<td>9.06</td>
</tr>
<tr>
<td>2.995</td>
<td>8.97</td>
<td>3.005</td>
<td>9.03</td>
</tr>
<tr>
<td>2.999</td>
<td>8.99</td>
<td>3.001</td>
<td>9.006</td>
</tr>
</tbody>
</table>

We see that the values of $f(x) = x^2$ get closer to 16 as the sequence of values of x approaches 3. We also say that as x tends to 3, $f(x) = x^2$ tends to 16 or we abbreviate the statement with the notation:

$$f(x) \to 16 \text{ as } x \to 3.$$

We can also use the graph below to see the behavior of the values of $f(x)$ as x approaches 3:

Definition We write

$$\lim_{x \to \alpha} f(x) = L$$

and say “The limit of $f(x)$, as x approaches α, equals L”, if we can make the value of $f(x)$ as close as we like to L, by taking x sufficiently close to α (on either side) but not equal to α.

Note A Table of values like the one shown above for $f(x) = x^2$ is useful for predicting what the limit might be, but may give the wrong impression. (See the example where $f(x) = \sin(1/x)$ at the end of this set of notes). For now an accurate graph is the most reliable method we have to find limits. In
the next sections we will use a catalogue of well known limits together with some rules to calculate limits of more complicated functions. We give an outline of an algebraic proof that that $\lim_{x \to 3} x^2 = 9$ at the end of this set of lecture notes.

Example Use the graph of $y = x^2$ above to evaluate the following limits:

\[
\lim_{x \to 3} x^2 = \quad \lim_{x \to -2} x^2 = \quad .
\]

- Roughly speaking, the statement $\lim_{x \to a} f(x) = L$ means that as the values of x get close to (but not equal to) a, the values of $f(x)$ get closer and closer to L.
- The value of the function $f(x)$ at the point $x = a$, plays no role in determining the value of the limit of the function at $x = a$ (if it exists), since we only take into account the behavior of a function near the point $x = a$ to determine if it has a limit of not. (see the example below).

Example Let

\[
g(x) = \begin{cases}
 x^2 & x \neq 3 \\
 0 & x = 3
\end{cases}
\]

(a) Draw the graph of this function and use the graph to find

\[
\lim_{x \to 3} g(x)
\]

- Note that the value of $\lim_{x \to 3} g(x) \neq g(3)$ above.
- If the values of two functions, $f(x)$ and $g(x)$ are the same except at $x = a$, then they have the same limit as x approaches a if that limit exists, i.e. $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ if it exists. (for example $f(x)$ and $g(x)$ above.)
- Sometimes the values of a function do not have a limit as x approaches a number a and, in this case, we say $\lim_{x \to a} f(x)$ does not exist. We will examine a number of ways in which this can happen below. (see the function $k(x)$ shown below at $x = 3, 7, 10$.)
- The value of the function $f(x)$ at the point $x = a$, plays no role in whether the limit exists or not, since we only take into account the behavior of a function near the point $x = a$ to determine if it has a limit of not (Sometimes $\lim_{x \to a} f(x)$ exists for values of a which are not in the domain of f [e.g. $g_1(x) = \frac{(x-3)x^2}{(x-3)} = \begin{cases}
 x^2 & x \neq 3 \\
 \text{undefined} & x = 3
\end{cases}$. Also check out $f(x) = x^2 \sin(1/x)$ next lecture.])
Example Consider the graph shown below of the function

\[k(x) = \begin{cases}
 x^2 & -3 < x < 3 \\
 x & 3 \leq x < 5 \\
 0 & x = 5 \\
 x & 5 < x \leq 7 \\
 \frac{1}{x-10} & x > 7
\end{cases} \]

The limit, \(\lim_{x \to 0} k(x) \), when it exists will be the (unique) y-value that you approach as you travel along the graph of the function, from both sides.

(a) What is \(\lim_{x \to 0} k(x) \)?

(b) What happens at \(x = 3 \). Is there a unique number \(L \) so that we can make the value of \(f(x) \) as close as we like to \(L \), by taking \(x \) sufficiently close to \(a = 3 \)(on either side) but not equal to \(a = 3 \)? In other words, does \(\lim_{x \to 3} k(x) \) exist?
Left and Right Hand Limits

Definition We write \(\lim_{x \to a^-} f(x) = L \) and say the left-hand limit of \(f(x) \) as \(x \) approaches \(a \) is equal to \(L \) if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) with \(x \) less than \(a \). We say \(\lim_{x \to a^+} f(x) = L \) and say the right-hand limit of \(f(x) \) as \(x \) approaches \(a \) is equal to \(L \) if we can make the values of \(f(x) \) arbitrarily close to \(L \) by taking \(x \) sufficiently close to \(a \) with \(x \) greater than \(a \).

Note: \(\lim_{x \to a} f(x) = L \) if and only if \(\lim_{x \to a^-} f(x) = L \) and \(\lim_{x \to a^+} f(x) = L \).

(c) Evaluate \(\lim_{x \to 5} k(x) \).

(d) What is \(\lim_{x \to 7^-} k(x) \)?

What is \(\lim_{x \to 7^+} k(x) \)?

Does \(\lim_{x \to 7} k(x) \) exist?

(e) Does \(\lim_{x \to 10} k(x) \) exist?

Infinite Limits

Definition: We write \(\lim_{x \to a^-} f(x) = -\infty \) and say the left-hand limit of \(f(x) \) as \(x \) approaches \(a \) is equal to \(-\infty \) if we can make the values of \(f(x) \) arbitrarily large and negative by taking \(x \) sufficiently close to \(a \) with \(x \) less than \(a \). Similar definitions are used for the one sided infinite limits:

\[
\lim_{x \to a^-} f(x) = -\infty, \quad \lim_{x \to a^+} f(x) = \infty \quad \lim_{x \to a^+} f(x) = -\infty.
\]

Definition The line \(x = a \) is a vertical asymptote to the curve \(y = f(x) \) if at least one of the following is true:

\[
\lim_{x \to a^-} f(x) = -\infty, \quad \lim_{x \to a^-} f(x) = \infty, \quad \lim_{x \to a^+} f(x) = \infty \quad \lim_{x \to a^+} f(x) = -\infty.
\]

Definition If \(\lim_{x \to a^-} f(x) = \infty = \lim_{x \to a^+} f(x) \), then we say

\[
\lim_{x \to a} f(x) = \infty.
\]
Similarly if \(\lim_{x \to a^-} f(x) = -\infty = \lim_{x \to a^+} f(x) \), then we say

\[
\lim_{x \to a} f(x) = -\infty.
\]

(f) Does the graph of \(k(x) \) above have a vertical asymptote? If so what is the equation of the vertical asymptote?

(g) Determine the infinite limits \(\lim_{x \to 10^+} k(x) \) and \(\lim_{x \to 10^-} k(x) \). (Say whether the limit is \(\infty \) or \(-\infty\).)

In the following example, we will see why a table of function values may be misleading when calculating limits.

Example The graph of \(f(x) = \sin(1/x) \) is shown below. If we look at the behavior of the curve as \(x \) approaches 0, we see that the graph oscillates between -1 and +1 with increasing frequency. Since the \(y \)-values on the graph do not approach a unique \(y \)-value \(L \) as \(x \) approaches 0, we have that \(\lim_{x \to 0} \sin(1/x) \) does not exist.

In this case, we can find two infinite sequences of \(x \) values both approaching 0, but giving different impressions of what happens the function values as \(x \) approaches 0. Fill in the values of \(\sin(1/x) \) for both sequences of \(x \)-values approaching 0 below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x) = \sin(1/x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2/3\pi)</td>
<td>(2/\pi)</td>
</tr>
<tr>
<td>(2/7\pi)</td>
<td>(2/5\pi)</td>
</tr>
<tr>
<td>(2/11\pi)</td>
<td>(2/9\pi)</td>
</tr>
<tr>
<td>(2/15\pi)</td>
<td>(2/13\pi)</td>
</tr>
<tr>
<td>(2/(4n - 1)\pi)</td>
<td>(2/(4n + 1)\pi)</td>
</tr>
</tbody>
</table>

Note For any function \(f(x) \), if \(\lim_{x \to a} f(x) \) exists, then we cannot find two infinite sequences of \(x \)-values approaching 0 for which the corresponding function values approach different numbers.
Appendix

How do we prove algebraically that we can make the values of \(x^2 \) as close as we like to 9, by taking \(x \) sufficiently close to 3(on either side) but not equal to 3.

The following statement guarantees it:

Given any number of decimal places, say \(n \) of them, I can always say that if \(x \) is equal to 3 up to \(n+1 \) decimal places, then \(x^2 \) is equal to 9 up to \(n \) decimal places. For example if \(x = 3 + h \), where \(h < .00001 \), then \(x^2 = 9 + 2h + h^2 \) and \(2h + h^2 < .0001 \), hence \(x^2 \) is certainly equal to 9 up to 3 decimal places.

So if I take a sequence of \(x \) values approaching 3, as the values of \(x \) get closer and closer to 3, the values of \(f(x) = x^2 \) are guaranteed to be equal to 9 up to 10 decimal places, 100 decimal places, 1000 decimal places, as the values of \(x \) get within 11, 101 and 102 decimal places of 3 respectively. Hence, for every sequence of values of \(x \) approaching 3, the values of \(f(x) = x^2 \) approach 9.