Derivative as a function

In the previous section we defined the derivative of a function f at a number a (when the function f is defined in an open interval containing a) to be

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

when this limit exists. This gives the slope of the tangent to the curve $y=f(x)$ when $x=a$
Example Last day we saw that if $f(x)=x^{2}+5 x$, then $f^{\prime}(a)=2 a+5$ for any value of a. Therefore $f^{\prime}(1)=7, f^{\prime}(2)=9, f^{\prime}(2.5)=10$ etc....
The value of $f^{\prime}(a)$ varies as the number a varies, hence f^{\prime} is a function of a. We can change the variable from a to x to get a new function, called The derivative of f

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Domain of $f^{\prime}(x)$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

($f^{\prime}(x)$ is defined when f is defined in an open interval containing x and the above limit exists). Note that when calculating this limit for a particular value of $x, h \rightarrow 0$ and the value of x remains constant.

Note also that if x is in the domain of f^{\prime}, it must satisfy the following 3 conditions:

1. x must be in the domain of f.
2. $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ must exist at x.
3. f must be defined in an open interval containing x.

The domain of the function f^{\prime} may be smaller than the domain of the function f since 2 or 3 may fail for some values of x in the domain of f.

Example

Example What is $f^{\prime}(x)$ when $f(x)=x^{2}+2 x+4$?. What is the domain of $f^{\prime}(x)$?

Example

Example What is $f^{\prime}(x)$ when $f(x)=x^{2}+2 x+4$?. What is the domain of $f^{\prime}(x)$?

- To calculate $f^{\prime}(x)$, we calculate using limits as we did for $f^{\prime}(a)$ in the previous lecture, replacing a by x.

Example

Example What is $f^{\prime}(x)$ when $f(x)=x^{2}+2 x+4$?. What is the domain of $f^{\prime}(x)$?

- To calculate $f^{\prime}(x)$, we calculate using limits as we did for $f^{\prime}(a)$ in the previous lecture, replacing a by x.
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Example

Example What is $f^{\prime}(x)$ when $f(x)=x^{2}+2 x+4$?. What is the domain of $f^{\prime}(x)$?

- To calculate $f^{\prime}(x)$, we calculate using limits as we did for $f^{\prime}(a)$ in the previous lecture, replacing a by x.
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$-\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2(x+h)+4-\left[x^{2}+2 x+4\right]}{h}$

Example

Example What is $f^{\prime}(x)$ when $f(x)=x^{2}+2 x+4$?. What is the domain of $f^{\prime}(x)$?

- To calculate $f^{\prime}(x)$, we calculate using limits as we did for $f^{\prime}(a)$ in the previous lecture, replacing a by x.
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\Rightarrow=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2(x+h)+4-\left[x^{2}+2 x+4\right]}{h}$
$-\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+2 x+2 h+4-x^{2}-2 x-4}{h}$

Example

Example What is $f^{\prime}(x)$ when $f(x)=x^{2}+2 x+4$?. What is the domain of $f^{\prime}(x)$?

- To calculate $f^{\prime}(x)$, we calculate using limits as we did for $f^{\prime}(a)$ in the previous lecture, replacing a by x.
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- $=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2(x+h)+4-\left[x^{2}+2 x+4\right]}{h}$
$-\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+2 x+2 h+4-x^{2}-2 x-4}{h}$
$\nabla=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+2 x+2 h+4-x^{2}-2 x-4}{h}=\lim _{h \rightarrow 0} \frac{2 \times h+h^{2}+2 h}{h}$

Example

Example What is $f^{\prime}(x)$ when $f(x)=x^{2}+2 x+4$?. What is the domain of $f^{\prime}(x)$?

- To calculate $f^{\prime}(x)$, we calculate using limits as we did for $f^{\prime}(a)$ in the previous lecture, replacing a by x.
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- $=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2(x+h)+4-\left[x^{2}+2 x+4\right]}{h}$
$-\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+2 x+2 h+4-x^{2}-2 x-4}{h}$
$\nabla=\lim _{h \rightarrow 0} \frac{x^{2}+2 \times h+h^{2}+2 x+2 h+4-x^{2}-2 x-4}{h}=\lim _{h \rightarrow 0} \frac{2 \times h+h^{2}+2 h}{h}$
$-\lim _{h \rightarrow 0} \frac{h(2 x+h+2)}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h+2)}{\not p}=\lim _{h \rightarrow 0}(2 x+h+2)=2 x+2$.

Example

Example What is $f^{\prime}(x)$ when $f(x)=x^{2}+2 x+4$?. What is the domain of $f^{\prime}(x)$?

- To calculate $f^{\prime}(x)$, we calculate using limits as we did for $f^{\prime}(a)$ in the previous lecture, replacing a by x.
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- $=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2(x+h)+4-\left[x^{2}+2 x+4\right]}{h}$
$-\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+2 x+2 h+4-x^{2}-2 x-4}{h}$
$-=\lim _{h \rightarrow 0} \frac{x^{2}+2 \times h+h^{2}+2 x+2 h+4-x^{2}-2 x-4}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+2 h}{h}$
$-\lim _{h \rightarrow 0} \frac{h(2 x+h+2)}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h+2)}{\not p}=\lim _{h \rightarrow 0}(2 x+h+2)=2 x+2$.
- $f^{\prime}(x)=2 x+2$.

Example

Example What is $f^{\prime}(x)$ when $f(x)=x^{2}+2 x+4$?. What is the domain of $f^{\prime}(x)$?

- To calculate $f^{\prime}(x)$, we calculate using limits as we did for $f^{\prime}(a)$ in the previous lecture, replacing a by x.
- $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
- $=\lim _{h \rightarrow 0} \frac{(x+h)^{2}+2(x+h)+4-\left[x^{2}+2 x+4\right]}{h}$
$-\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+2 x+2 h+4-x^{2}-2 x-4}{h}$
$-\lim _{h \rightarrow 0} \frac{x^{2}+2 \times h+h^{2}+2 x+2 h+4-x^{2}-2 x-4}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}+2 h}{h}$
$-\lim _{h \rightarrow 0} \frac{h(2 x+h+2)}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h+2)}{\not p}=\lim _{h \rightarrow 0}(2 x+h+2)=2 x+2$.
- $f^{\prime}(x)=2 x+2$.
- Since the domain of f is all real numbers and the above limit exists for all real numbers, the domain of f^{\prime} is also all real numbers.

Graph of the derivative $f^{\prime}(x)$

Below we see how the graph of $f(x)=x^{2}+2 x+4$ is related to the graph of its derivative $f^{\prime}(x)=2 x+2$, which gives the slope of the tangents to the graph of $f(x)=x^{2}+2 x+4$. (See Mathematica File)

Fill in $<,>$ or $=$ as appropriate:
When $f(x)$ is decreasing the function $f^{\prime}(x) _0$
When $f(x)$ is increasing the function $f^{\prime}(x)$ \qquad 0 At the turning point $x=-1, f^{\prime}(x)$ \qquad

Graph of the derivative $f^{\prime}(x)$

Below we see how the graph of $f(x)=x^{2}+2 x+4$ is related to the graph of its derivative $f^{\prime}(x)=2 x+2$, which gives the slope of the tangents to the graph of $f(x)=x^{2}+2 x+4$. (See Mathematica File)

Fill in $<,>$ or $=$ as appropriate:
When $f(x)$ is decreasing the function $f^{\prime}(x) _0$
When $f(x)$ is increasing the function $f^{\prime}(x)$ \qquad 0 At the turning point $x=-1, f^{\prime}(x)$ \qquad 0

- When $f(x)$ is decreasing the function $f^{\prime}(x)<0$

Graph of the derivative $f^{\prime}(x)$

Below we see how the graph of $f(x)=x^{2}+2 x+4$ is related to the graph of its derivative $f^{\prime}(x)=2 x+2$, which gives the slope of the tangents to the graph of $f(x)=x^{2}+2 x+4$. (See Mathematica File)

Fill in $<,>$ or $=$ as appropriate:
When $f(x)$ is decreasing the function $f^{\prime}(x) _0$
When $f(x)$ is increasing the function $f^{\prime}(x)$ \qquad 0 At the turning point $x=-1, f^{\prime}(x)$ \qquad

- When $f(x)$ is decreasing the function $f^{\prime}(x)<0$
- When $f(x)$ is increasing the function $f^{\prime}(x)>0$

Graph of the derivative $f^{\prime}(x)$

Below we see how the graph of $f(x)=x^{2}+2 x+4$ is related to the graph of its derivative $f^{\prime}(x)=2 x+2$, which gives the slope of the tangents to the graph of $f(x)=x^{2}+2 x+4$. (See Mathematica File)

Fill in $<,>$ or $=$ as appropriate:
When $f(x)$ is decreasing the function $f^{\prime}(x) _0$
When $f(x)$ is increasing the function $f^{\prime}(x)$ \qquad 0 At the turning point $x=-1, f^{\prime}(x)$ \qquad

- When $f(x)$ is decreasing the function $f^{\prime}(x)<0$
- When $f(x)$ is increasing the function $f^{\prime}(x)>0$
- At the turning point $x=-1, f^{\prime}(x)=0$

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x>0$, both $x+h$ and x are >0, when h is very close to 0 .

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x>0$, both $x+h$ and x are >0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x>0$, both $x+h$ and x are >0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x>0$, both $x+h$ and x are >0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x<0$, both $x+h$ and x are <0, when h is very close to 0 .

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x>0$, both $x+h$ and x are >0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x<0$, both $x+h$ and x are <0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{-(x+h)+x}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=\lim _{h \rightarrow 0}(-1)=-1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x>0$, both $x+h$ and x are >0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x<0$, both $x+h$ and x are <0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{-(x+h)+x}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=\lim _{h \rightarrow 0}(-1)=-1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

- $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}$

What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x>0$, both $x+h$ and x are >0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x<0$, both $x+h$ and x are <0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{-(x+h)+x}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=\lim _{h \rightarrow 0}(-1)=-1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

- $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}$
- $\frac{|h|}{h}=1$ if $h>0$ and $\frac{|h|}{h}=-1$ if $h<0$.

What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x>0$, both $x+h$ and x are >0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x<0$, both $x+h$ and x are <0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{-(x+h)+x}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=\lim _{h \rightarrow 0}(-1)=-1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

- $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}$
- $\frac{|h|}{h}=1$ if $h>0$ and $\frac{|h|}{h}=-1$ if $h<0$.
- So $\lim _{h \rightarrow 0} \frac{|h|}{h}$ does not exist since the limit from the left is -1 and the limit from the right is +1 . (no tangent at 0 on graph)
What is the domain of $f^{\prime}(x)$?

Domain of Derivative of $|x|$

Consider the function $f(x)=|x|$.
Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x>0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x>0$, both $x+h$ and x are >0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{x+h-x}{h}=\lim _{h \rightarrow 0} \frac{h}{h}=\lim _{h \rightarrow 0} 1=1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x<0$?

- $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}$
- When $x<0$, both $x+h$ and x are <0, when h is very close to 0 .
- So $\lim _{h \rightarrow 0} \frac{|x+h|-|x|}{h}=\lim _{h \rightarrow 0} \frac{-(x+h)+x}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}=\lim _{h \rightarrow 0}(-1)=-1$.

Does $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ exist when $x=0$?

- $\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{|h|-|0|}{h}=\lim _{h \rightarrow 0} \frac{|h|}{h}$
- $\frac{|h|}{h}=1$ if $h>0$ and $\frac{|h|}{h}=-1$ if $h<0$.
- So $\lim _{h \rightarrow 0} \frac{|h|}{h}$ does not exist since the limit from the left is -1 and the limit from the right is +1 . (no tangent at 0 on graph)
What is the domain of $f^{\prime}(x)$?
- Domain $f^{\prime}(x)=$ all real numbers except 0 .

Different Notation

Using $y=f(x)$, to denote that the independent variable is y, there are a number of notations used to denote the derivative of $f(x)$:

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The symbols D and $\frac{d}{d x}$ are called differential operators, because when they are applied to a function, they transform the function to its derivative. The symbol $\frac{d y}{d x}$ should not be interpreted as a quotient rather it is a limit originating from the notation

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}
$$

When we evaluate the derivative at a number a, we use the following notation

$$
f^{\prime}(a)=\left.\frac{d y}{d x}\right|_{x=a}
$$

Differentiability

Definition When a function f is defined in an open interval containing a, we say a function f is differentiable at a if $f^{\prime}(a)$ exists. [That is, conditions 1,2 and 3 from page 1 must be satisfied for $x=a$.] It is differentiable on an open interval, (a, b) (or (a, ∞) or $(-\infty, a))$ if it is differentiable at every number in the interval.

Note: Saying that f is differentiable at a is the same as saying that a is in the domain of f^{\prime}.
Example Let $f(x)=|x|$. Is $f(x)$ differentiable at 0 ?

If $f(x)$ differentiable on the intervals $(-\infty, 0)$ and $(0, \infty)$.

Is $f(x)$ continuous at 0 ?

Differentiability

Definition When a function f is defined in an open interval containing a, we say a function f is differentiable at a if $f^{\prime}(a)$ exists. [That is, conditions 1,2 and 3 from page 1 must be satisfied for $x=a$.] It is differentiable on an open interval, (a, b) (or (a, ∞) or $(-\infty, a))$ if it is differentiable at every number in the interval.

Note: Saying that f is differentiable at a is the same as saying that a is in the domain of f^{\prime}.
Example Let $f(x)=|x|$. Is $f(x)$ differentiable at 0 ?

- No because, as we saw above, $f^{\prime}(0)$ does not exist.

If $f(x)$ differentiable on the intervals $(-\infty, 0)$ and $(0, \infty)$.

Is $f(x)$ continuous at 0 ?

Differentiability

Definition When a function f is defined in an open interval containing a, we say a function f is differentiable at a if $f^{\prime}(a)$ exists. [That is, conditions 1,2 and 3 from page 1 must be satisfied for $x=a$.] It is differentiable on an open interval, (a, b) (or (a, ∞) or $(-\infty, a))$ if it is differentiable at every number in the interval.

Note: Saying that f is differentiable at a is the same as saying that a is in the domain of f^{\prime}.
Example Let $f(x)=|x|$. Is $f(x)$ differentiable at 0 ?

- No because, as we saw above, $f^{\prime}(0)$ does not exist.

If $f(x)$ differentiable on the intervals $(-\infty, 0)$ and $(0, \infty)$.

- yes because, $f^{\prime}(x)$ exists for all values of x in the intervals $(-\infty, 0)$ and $(0, \infty)$.

Is $f(x)$ continuous at 0 ?

Differentiability

Definition When a function f is defined in an open interval containing a, we say a function f is differentiable at a if $f^{\prime}(a)$ exists. [That is, conditions 1,2 and 3 from page 1 must be satisfied for $x=a$.] It is differentiable on an open interval, (a, b) (or (a, ∞) or $(-\infty, a)$) if it is differentiable at every number in the interval.

Note: Saying that f is differentiable at a is the same as saying that a is in the domain of f^{\prime}.
Example Let $f(x)=|x|$. Is $f(x)$ differentiable at 0 ?

- No because, as we saw above, $f^{\prime}(0)$ does not exist.

If $f(x)$ differentiable on the intervals $(-\infty, 0)$ and $(0, \infty)$.

- yes because, $f^{\prime}(x)$ exists for all values of x in the intervals $(-\infty, 0)$ and $(0, \infty)$.

Is $f(x)$ continuous at 0 ?

- yes $f(x)=|x|$ is continuous at 0 , because $\lim _{x \rightarrow 0}|x|=0$. However, as we showed above, it is not differentiable at 0 . (geometrically: there is a sharp point on the curve and no tangent line exists).

Differentiable at a implies continuous at a

Theorem If f is differentiable at a, then f is continuous at a.
In particular the theorem shows that if a function has a discontinuity at a point a, then it cannot be differentiable at a. (Note by the previous example, the converse is not true; a function can be continuous at a, but not differentiable at a).

Geometrically, a function is differentiable at a point a if its graph is smooth at a. A function f can fail to be differentiable at a point a in a number of ways.

Differentiable at a implies continuous at a

Theorem If f is differentiable at a, then f is continuous at a.
In particular the theorem shows that if a function has a discontinuity at a point a, then it cannot be differentiable at a. (Note by the previous example, the converse is not true; a function can be continuous at a, but not differentiable at a).

Geometrically, a function is differentiable at a point a if its graph is smooth at a. A function f can fail to be differentiable at a point a in a number of ways.

- The function might be continuous at a, but have a sharp point or kink in the graph, like the graph of $f(x)=|x|$ at 0 .

Differentiable at a implies continuous at a

Theorem If f is differentiable at a, then f is continuous at a.
In particular the theorem shows that if a function has a discontinuity at a point a, then it cannot be differentiable at a. (Note by the previous example, the converse is not true; a function can be continuous at a, but not differentiable at a).

Geometrically, a function is differentiable at a point a if its graph is smooth at a. A function f can fail to be differentiable at a point a in a number of ways.

- The function might be continuous at a, but have a sharp point or kink in the graph, like the graph of $f(x)=|x|$ at 0 .
- The function might not be continuous or might be undefined at a.

Differentiable at a implies continuous at a

Theorem If f is differentiable at a, then f is continuous at a.
In particular the theorem shows that if a function has a discontinuity at a point a, then it cannot be differentiable at a. (Note by the previous example, the converse is not true; a function can be continuous at a, but not differentiable at a).

Geometrically, a function is differentiable at a point a if its graph is smooth at
a. A function f can fail to be differentiable at a point a in a number of ways.

- The function might be continuous at a, but have a sharp point or kink in the graph, like the graph of $f(x)=|x|$ at 0 .
- The function might not be continuous or might be undefined at a.
- The function might be continuous but the tangent line may be vertical, i.e. $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}= \pm \infty$.

Points where function is not differentiable

Example Identify the points in the graphs below where the functions are not differentiable.

Points where function is not differentiable

Example Identify the points in the graphs below where the functions are not differentiable.

- The graph on the left has a sharp point at $x=0$. So the function is not differentiable at $x=0$.

Points where function is not differentiable

Example Identify the points in the graphs below where the functions are not differentiable.

- The graph on the left has a sharp point at $x=0$. So the function is not differentiable at $x=0$.
- The graph in the center has a vertical tangent at $x=0$. So the function is not differentiable at $x=0$.

Points where function is not differentiable

Example Identify the points in the graphs below where the functions are not differentiable.

- The graph on the left has a sharp point at $x=0$. So the function is not differentiable at $x=0$.
- The graph in the center has a vertical tangent at $x=0$. So the function is not differentiable at $x=0$.
- The graph on the right is not continuous at $x=3, x=5, x=7$ and $x=10$. So the function cannot be differentiable at those points.

Higher Derivatives

We have seen that given a function $f(x)$, we can define a new function $f^{\prime}(x)$. We can continue this process by defining a new function,

$$
f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)
$$

This is the second derivative of the function $f(x)$. This function gives the slope of the tangent to the curve $y=f^{\prime}(x)$ at each value of x. We can then define the third derivative of $f(x)$ as the derivative of the second derivative, etc...

Example Let $f(x)=x^{2}+2 x+4$. We saw above that the derivative of $f(x)$ is $f^{\prime}(x)=2 x+2$. Find and interpret the second derivative of $f(x)$;

Higher Derivatives

We have seen that given a function $f(x)$, we can define a new function $f^{\prime}(x)$. We can continue this process by defining a new function,

$$
f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)
$$

This is the second derivative of the function $f(x)$. This function gives the slope of the tangent to the curve $y=f^{\prime}(x)$ at each value of x. We can then define the third derivative of $f(x)$ as the derivative of the second derivative, etc...

Example Let $f(x)=x^{2}+2 x+4$. We saw above that the derivative of $f(x)$ is $f^{\prime}(x)=2 x+2$. Find and interpret the second derivative of $f(x)$;

- $f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)+2-(2 x+2)}{h}$

Higher Derivatives

We have seen that given a function $f(x)$, we can define a new function $f^{\prime}(x)$. We can continue this process by defining a new function,

$$
f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)
$$

This is the second derivative of the function $f(x)$. This function gives the slope of the tangent to the curve $y=f^{\prime}(x)$ at each value of x. We can then define the third derivative of $f(x)$ as the derivative of the second derivative, etc...

Example Let $f(x)=x^{2}+2 x+4$. We saw above that the derivative of $f(x)$ is $f^{\prime}(x)=2 x+2$. Find and interpret the second derivative of $f(x)$;

- $f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)+2-(2 x+2)}{h}$
- $=\lim _{h \rightarrow 0} \frac{2 x+2 h+2-2 x-2}{h}=\lim _{h \rightarrow 0} \frac{2 x+2 h+2 x-2 x-2 x}{h}$

Higher Derivatives

We have seen that given a function $f(x)$, we can define a new function $f^{\prime}(x)$. We can continue this process by defining a new function,

$$
f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)
$$

This is the second derivative of the function $f(x)$. This function gives the slope of the tangent to the curve $y=f^{\prime}(x)$ at each value of x. We can then define the third derivative of $f(x)$ as the derivative of the second derivative, etc...

Example Let $f(x)=x^{2}+2 x+4$. We saw above that the derivative of $f(x)$ is $f^{\prime}(x)=2 x+2$. Find and interpret the second derivative of $f(x)$;

- $f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)+2-(2 x+2)}{h}$
- $=\lim _{h \rightarrow 0} \frac{2 x+2 h+2-2 x-2}{h}=\lim _{h \rightarrow 0} \frac{2 x+2 h+2 x-2 x-\nmid}{h}$
- $=\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2=2$.

Higher Derivatives

We have seen that given a function $f(x)$, we can define a new function $f^{\prime}(x)$. We can continue this process by defining a new function,

$$
f^{\prime \prime}(x)=\frac{d}{d x} f^{\prime}(x)
$$

This is the second derivative of the function $f(x)$. This function gives the slope of the tangent to the curve $y=f^{\prime}(x)$ at each value of x. We can then define the third derivative of $f(x)$ as the derivative of the second derivative, etc...

Example Let $f(x)=x^{2}+2 x+4$. We saw above that the derivative of $f(x)$ is $f^{\prime}(x)=2 x+2$. Find and interpret the second derivative of $f(x)$;

- $f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{2(x+h)+2-(2 x+2)}{h}$
$-=\lim _{h \rightarrow 0} \frac{2 x+2 h+2-2 x-2}{h}=\lim _{h \rightarrow 0} \frac{2 x+2 h+2 x-2 x-\nmid}{h}$
- $=\lim _{h \rightarrow 0} \frac{2 h}{h}=\lim _{h \rightarrow 0} 2=2$.
- $f^{\prime \prime}(x)=2$ for all values of x. (which makes sense, since $f^{\prime \prime}(x)$ is the slope of the tangent to the graph of $f^{\prime}(x)=2 x+2$ for any $\left.x\right)$.

Acceleration

The second derivative gives us the rate of change of the rate of change. In the case of a position function $s=s(t)$ of an object moving in a straight line, the derivative $v(t)=s^{\prime}(t)$ gives us the velocity of the moving object at time t and the second derivative $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$ gives us the acceleration of the moving object at time t. This is the rate of change of the velocity at time t.

Example The position of an object moving in a straight line at time t is given by $s(t)=t^{2}+2 t+4$. What is the velocity and acceleration of the object after $t=5$ seconds?

Acceleration

The second derivative gives us the rate of change of the rate of change. In the case of a position function $s=s(t)$ of an object moving in a straight line, the derivative $v(t)=s^{\prime}(t)$ gives us the velocity of the moving object at time t and the second derivative $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$ gives us the acceleration of the moving object at time t. This is the rate of change of the velocity at time t.

Example The position of an object moving in a straight line at time t is given by $s(t)=t^{2}+2 t+4$. What is the velocity and acceleration of the object after $t=5$ seconds?

- If $s(t)=t^{2}+2 t+4$, then the velocity is given by its derivative $s^{\prime}(t)=v(t)=2 t+2$.
we've already worked through the calculation with the variable x instead of t.

Acceleration

The second derivative gives us the rate of change of the rate of change. In the case of a position function $s=s(t)$ of an object moving in a straight line, the derivative $v(t)=s^{\prime}(t)$ gives us the velocity of the moving object at time t and the second derivative $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$ gives us the acceleration of the moving object at time t. This is the rate of change of the velocity at time t.

Example The position of an object moving in a straight line at time t is given by $s(t)=t^{2}+2 t+4$. What is the velocity and acceleration of the object after $t=5$ seconds?

- If $s(t)=t^{2}+2 t+4$, then the velocity is given by its derivative $s^{\prime}(t)=v(t)=2 t+2$.
we've already worked through the calculation with the variable x instead of t.
- The velocity after 5 seconds is $v(5)=2(5)+2=12 \mathrm{~m} / \mathrm{s}$ (if distance is measured in meters).

Acceleration

The second derivative gives us the rate of change of the rate of change. In the case of a position function $s=s(t)$ of an object moving in a straight line, the derivative $v(t)=s^{\prime}(t)$ gives us the velocity of the moving object at time t and the second derivative $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$ gives us the acceleration of the moving object at time t. This is the rate of change of the velocity at time t.

Example The position of an object moving in a straight line at time t is given by $s(t)=t^{2}+2 t+4$. What is the velocity and acceleration of the object after $t=5$ seconds?

- If $s(t)=t^{2}+2 t+4$, then the velocity is given by its derivative $s^{\prime}(t)=v(t)=2 t+2$.
we've already worked through the calculation with the variable x instead of t.
- The velocity after 5 seconds is $v(5)=2(5)+2=12 \mathrm{~m} / \mathrm{s}$ (if distance is measured in meters).
- The acceleration function is the derivative of the velocity function. $a(t)=v^{\prime}(t)=2$. (We worked through this calculation with the variable x above.)

Acceleration

The second derivative gives us the rate of change of the rate of change. In the case of a position function $s=s(t)$ of an object moving in a straight line, the derivative $v(t)=s^{\prime}(t)$ gives us the velocity of the moving object at time t and the second derivative $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)$ gives us the acceleration of the moving object at time t. This is the rate of change of the velocity at time t.

Example The position of an object moving in a straight line at time t is given by $s(t)=t^{2}+2 t+4$. What is the velocity and acceleration of the object after $t=5$ seconds?

- If $s(t)=t^{2}+2 t+4$, then the velocity is given by its derivative $s^{\prime}(t)=v(t)=2 t+2$.
we've already worked through the calculation with the variable x instead of t.
- The velocity after 5 seconds is $v(5)=2(5)+2=12 \mathrm{~m} / \mathrm{s}$ (if distance is measured in meters).
- The acceleration function is the derivative of the velocity function. $a(t)=v^{\prime}(t)=2$. (We worked through this calculation with the variable x above.)
- The acceleration is constant and $a(5)=2$.

Notation for Higher derivatives

The second derivative is also denoted by

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}
$$

The third derivative of f is the derivative of the second derivative, denoted

$$
\frac{d}{d x} f^{\prime \prime}(x)=f^{\prime \prime \prime}(x)=y^{\prime \prime \prime}=y^{(3)}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

Higher derivative are denoted

$$
f^{(4)}(x)=y^{(4)}=\frac{d^{4} y}{d x^{4}}, \quad f^{(5)}(x)=y^{(5)}=\frac{d^{5} y}{d x^{5}}, \text { etc } \ldots
$$

Example If $f(x)=x^{2}+2 x+4$, find $f^{(4)}(x)$ and $f^{(5)}(x)$.

Notation for Higher derivatives

The second derivative is also denoted by

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}
$$

The third derivative of f is the derivative of the second derivative, denoted

$$
\frac{d}{d x} f^{\prime \prime}(x)=f^{\prime \prime \prime}(x)=y^{\prime \prime \prime}=y^{(3)}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

Higher derivative are denoted

$$
f^{(4)}(x)=y^{(4)}=\frac{d^{4} y}{d x^{4}}, \quad f^{(5)}(x)=y^{(5)}=\frac{d^{5} y}{d x^{5}}, \text { etc } \ldots
$$

Example If $f(x)=x^{2}+2 x+4$, find $f^{(4)}(x)$ and $f^{(5)}(x)$.

- Above, we saw that $f^{\prime \prime}(x)=2$ for all x.

Notation for Higher derivatives

The second derivative is also denoted by

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}
$$

The third derivative of f is the derivative of the second derivative, denoted

$$
\frac{d}{d x} f^{\prime \prime}(x)=f^{\prime \prime \prime}(x)=y^{\prime \prime \prime}=y^{(3)}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

Higher derivative are denoted

$$
f^{(4)}(x)=y^{(4)}=\frac{d^{4} y}{d x^{4}}, \quad f^{(5)}(x)=y^{(5)}=\frac{d^{5} y}{d x^{5}}, \text { etc } \ldots
$$

Example If $f(x)=x^{2}+2 x+4$, find $f^{(4)}(x)$ and $f^{(5)}(x)$.

- Above, we saw that $f^{\prime \prime}(x)=2$ for all x.
- $f^{\prime \prime \prime}(x)=\frac{d f^{\prime \prime}(x)}{d x}=\lim _{h \rightarrow 0} \frac{f^{\prime \prime}(x+h)-f^{\prime \prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{2-2}{h}=\lim _{x \rightarrow 0} \frac{0}{h}=0$.

Notation for Higher derivatives

The second derivative is also denoted by

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}
$$

The third derivative of f is the derivative of the second derivative, denoted

$$
\frac{d}{d x} f^{\prime \prime}(x)=f^{\prime \prime \prime}(x)=y^{\prime \prime \prime}=y^{(3)}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

Higher derivative are denoted

$$
f^{(4)}(x)=y^{(4)}=\frac{d^{4} y}{d x^{4}}, \quad f^{(5)}(x)=y^{(5)}=\frac{d^{5} y}{d x^{5}}, \text { etc } \ldots
$$

Example If $f(x)=x^{2}+2 x+4$, find $f^{(4)}(x)$ and $f^{(5)}(x)$.

- Above, we saw that $f^{\prime \prime}(x)=2$ for all x.
- $f^{\prime \prime \prime}(x)=\frac{d f^{\prime \prime}(x)}{d x}=\lim _{h \rightarrow 0} \frac{f^{\prime \prime}(x+h)-f^{\prime \prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{2-2}{h}=\lim _{x \rightarrow 0} \frac{0}{h}=0$.
- $f^{(4)}(x)=\frac{d f^{\prime \prime \prime}(x)}{d x}=\lim _{h \rightarrow 0} \frac{f^{\prime \prime \prime}(x+h)-f^{\prime \prime \prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=\lim _{x \rightarrow 0} \frac{0}{h}=0$.

Notation for Higher derivatives

The second derivative is also denoted by

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}
$$

The third derivative of f is the derivative of the second derivative, denoted

$$
\frac{d}{d x} f^{\prime \prime}(x)=f^{\prime \prime \prime}(x)=y^{\prime \prime \prime}=y^{(3)}=\frac{d}{d x}\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{d^{3} y}{d x^{3}}
$$

Higher derivative are denoted

$$
f^{(4)}(x)=y^{(4)}=\frac{d^{4} y}{d x^{4}}, \quad f^{(5)}(x)=y^{(5)}=\frac{d^{5} y}{d x^{5}}, \text { etc } \ldots
$$

Example If $f(x)=x^{2}+2 x+4$, find $f^{(4)}(x)$ and $f^{(5)}(x)$.

- Above, we saw that $f^{\prime \prime}(x)=2$ for all x.
- $f^{\prime \prime \prime}(x)=\frac{d f^{\prime \prime}(x)}{d x}=\lim _{h \rightarrow 0} \frac{f^{\prime \prime}(x+h)-f^{\prime \prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{2-2}{h}=\lim _{x \rightarrow 0} \frac{0}{h}=0$.
- $f^{(4)}(x)=\frac{d f^{\prime \prime \prime}(x)}{d x}=\lim _{h \rightarrow 0} \frac{f^{\prime \prime \prime}(x+h)-f^{\prime \prime \prime}(x)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=\lim _{x \rightarrow 0} \frac{0}{h}=0$.
- $f^{(5)}(x)=\frac{d f^{(4)}(x)}{d x}=\lim _{h \rightarrow 0} \frac{f^{(4)}(x+h)-f^{(4)}(x)}{h}=\lim _{h \rightarrow 0} \frac{0-0}{h}=\lim _{x \rightarrow 0} \frac{0}{h_{\equiv}}=0$.

