1. Solving the equation $3x - \cos x = 0$ using the Newton’s method with initial approximation $x_1 = 0$, what is x_2?

Solution: Let $f(x) = 3x - \cos x$. We have $f(0) = -1$, and since $f'(x) = 3 + \sin x$ we have $f'(0) = 3$. According to Newton’s Method

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 0 - \left(\frac{-1}{3}\right) = \frac{1}{3}.$$

2. A farmer has 4000 feet of fencing and wants to fence off a rectangular field that border a straight river. No fence is needed along the river. Find the dimension of this rectangle that will maximize the area.

Solution: Let x be the length and y be the width of the field. So we have

$$x + 2y = 4000 \iff y = \frac{1}{2}(4000 - x).$$

Consequently we have area given by

$$xy = x \cdot \frac{4000 - x}{2} = \frac{1}{2}(4000x - x^2).$$

Let’s denote the area function by $A(x)$. Since we need to maximize area we first differentiate $A(x)$ with respect to x:

$$A'(x) = \frac{1}{2}(4000 - 2x)$$

and then setting $A'(x) = 0$ gives $x = 2000$. Since $A(x)$ is a downward-opening parabola, we know that $x = 2000$ must be a maximum. The corresponding y-value is $\frac{1}{2}(4000 - 2000) = 1000$. Hence, the dimensions of the field are $2000 ft \times 1000 ft$.

3. Calculate the following indefinite integral

$$\int \frac{x^2 + 1}{\sqrt{x}} \, dx =$$

Solution:

$$\int \frac{x^2 + 1}{\sqrt{x}} \, dx = \int (x^{\frac{3}{2}} + x^{-\frac{1}{2}}) \, dx = \frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{1}{2}} + C$$
4. Calculate the following definite integral
\[\int_{0}^{3} |x - 1| \, dx = \]

Solution: The graph of \(y = |x-1| \) shows that the region between \(|x-1| \)
and the \(x \)-axis from 0 to 3 is composed of two triangles: let’s say \(\Delta_1 \)
with coordinates (0, 0), (0, 1), and (1, 0) and \(\Delta_2 \) with coordinates (1, 0),
(3, 0), and (3, 2). So using the formula \(\text{area}(\Delta) = \frac{1}{2}(\text{base})(\text{height}) \) we obtain
\[\int_{0}^{3} |x - 1| \, dx = \text{area}(\Delta_1) + \text{area}(\Delta_2) \]
\[= \frac{1}{2}(1)(1) + \frac{1}{2}(2)(2) \]
\[= \frac{1}{2} + 2 \]
\[= \frac{5}{2}. \]

5. What is the indefinite integral
\[\int x\sqrt{x - 1} \, dx = ? \]

Solution: Let \(u = x - 1; \) so \(du = dx \) and \(x = u + 1. \) Substituting
these into the integral we obtain
\[\int (u + 1)\sqrt{u} \, du = \int u^{\frac{3}{2}} + u^{\frac{1}{2}} \, du \]
\[= \frac{2}{5}u^{\frac{5}{2}} + \frac{2}{3}u^{\frac{3}{2}} + C \]
\[= \frac{2}{5}(x - 1)^{\frac{5}{2}} + \frac{2}{3}(x - 1)^{\frac{3}{2}} + C. \]

6. The equation of the slant asymptote of the curve \(y = \frac{3x^3 + 2x^2 + x + 3}{x^2 + 2x} \) is:

Solution: Carrying out long-division we obtain
\[y = \frac{3x^3 + 2x^2 + x + 3}{x^2 + 2x} = 3x - 4 + \frac{9x + 3}{x^2 + 2x}. \]
Therefore, the slant asymptote is \(y = 3x - 4. \)
7. Evaluate the definite integral

\[\int_0^2 \sqrt{4-x^2} \, dx. \]

Solution: Note that the given integral represents the area of the top-right quarter of the circle centered at the origin with radius 2. So we have

\[\int_0^2 \sqrt{4-x^2} \, dx = \frac{1}{4} \pi (2)^2 = \pi. \]

8. Let \(g(x) = \int_0^{x^3} \sqrt{1 + \sin^2 t} \, dt. \) Find \(g'(x). \)

Solution: Let \(u = x^3. \) Then the Fundamental Theorem of Calculus gives

\[g'(x) = \left(\frac{d}{du} \int_0^u \sqrt{1 + \sin^2 t} \, dt \right) \cdot \frac{du}{dx} = \sqrt{1 + \sin^2 (x^3)} \cdot 3x^2. \]

9. Calculate the area bounded by the curves \(y = x^2 + 2x + 3 \) and \(y = 2x + 4 \)

Solution: Let us first find the points of intersection of the two functions:

\[x^2 + 2x + 3 = 2x + 4 \iff x^2 - 1 = 0 \iff x = \pm 1. \]

Note that the line lies above the parabola on the interval \((-1, 1)\) (check by plugging in \(x = 0 \), for example), so the area of the bounded region is given by the following definite integral:

\[\int_{-1}^{1} [(2x + 4) - (x^2 + 2x + 3)] \, dx = \int_{-1}^{1} (-x^2 + 1) \, dx = \left[-\frac{x^3}{3} + x \right]_{-1}^{1} \]
\[= \left(\frac{(-1)^3}{3} + 1 \right) - \left(\frac{1^3}{3} - 1 \right) = \left(\frac{2}{3} \right) - \left(-\frac{2}{3} \right) = \frac{4}{3}. \]
10. (a) Evaluate the definite integral \(\int_0^2 x^2 \, dx \) by the limit definition.

Hint: \(1^2 + 2^2 + 3^2 + \cdots + n^2 = \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \)

(b) Verify your result using the fundamental theorem of calculus.

Solution: (a) [Aside: Note that we can use either right endpoints or left endpoints here (since \(n \to \infty \) in the limit definition), the only difference being that in the former case we would be summing from \(i = 1 \) to \(n \) and in the latter case we would sum from \(i = 0 \) to \(n - 1 \). Given that \(n \) is simpler to work with in the hint (rather than \(n - 1 \)), we will use right endpoints.]

We need to work with the limit definition of the definite integral:

\[
\int_0^2 x^2 \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x,
\]

where \(f(x) = x^2 \), \(\Delta x = \frac{2-0}{n} = \frac{2}{n} \) and \(x_i = 0 + i \Delta x = \frac{2i}{n} \). Let us first obtain a simpler version of the summation:

\[
\sum_{i=1}^{n} f(x_i) \Delta x = \sum_{i=1}^{n} \left(\frac{2i}{n} \right)^2 \left(\frac{2}{n} \right) = \sum_{i=1}^{n} \frac{8}{n^3} \cdot i^2 = \frac{8}{n^3} \sum_{i=1}^{n} i^2 \]

\[
= \frac{8}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \]

\[
= \frac{4}{3} \left(\frac{(n^2 + n)(2n + 1)}{n^3} \right) \]

\[
= \frac{4}{3} \left(\frac{2n^3 + 3n^2 + n}{n^3} \right)
\]

We now evaluate the limit of the sum as \(n \) approaches infinity:

\[
\lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x = \lim_{n \to \infty} \left(\frac{4}{3} \cdot \frac{2n^3 + 3n^2 + n}{n^3} \right) \]

\[
= \frac{4}{3} \cdot \lim_{n \to \infty} \left(\frac{2n^3 + 3n^2 + n}{n^3} \right) \]

\[
= \frac{4}{3} \cdot 2 = \frac{8}{3}
\]

(b) \(\int_0^2 x^2 \, dx = \left[\frac{x^3}{3} \right]_0^2 = \frac{8}{3} - 0 = \frac{8}{3} \)
11. Find the point on the line $3x + y = 9$ that is closest to the point $(1, -2)$.

Solution: Let (x, y) denote a point on the line $y = -3x + 9$; so $(x, y) = (x, -3x + 9)$. The distance between points $(x, -3x + 9)$ and $(1, -2)$ is given by

$$d(x) = \sqrt{(x - 1)^2 + ((-3x + 9) - (-2))^2} = \sqrt{10x^2 - 68x + 122}.$$

To minimize distance, we differentiate $d(x)$ with respect to x:

$$d'(x) = \frac{1}{2}(10x^2 - 68x + 122)^{-\frac{1}{2}}(20x - 68) = \frac{10x - 34}{\sqrt{10x^2 - 68x + 122}}.$$

Setting $d'(x) = 0$ gives $x = 3.4$. An easy way to verify that x is indeed a minimum is to observe that $d(x)$ is the square root of an upward-opening parabola. The corresponding y-value is given by $y = -3(3.4) + 9 = -10.2 + 9 = -1.2$.

12. If 1200 cm2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.

Solution: Let x denote the length of a side of the square base and y denote the height of the box. Then the surface area of the open box is given by

$$x^2 + 4xy = 1200 \iff y = \frac{1200 - x^2}{4x}.$$

The volume of the box is given by

$$x^2y = x^2 \cdot \frac{1200 - x^2}{4x} = 300x - \frac{1}{4}x^3.$$

Let us denote the volume function by $V(x)$. Since we need to maximize the volume over the interval $(0, \infty)$, we differentiate $V(x)$ with respect to x:

$$V'(x) = 300 - \frac{3}{4}x^2.$$

Setting $V'(x) = 0$ we get $x = 20$. To check that $x = 20$ gives us a maximum, let us take another derivative: $V''(x) = -\frac{3}{2}x$; since $V''(20) = -30 < 0$ we have confirmed (by the Second Derivative Test) that $x = 20$ is local maximum, but since this is the only critical point in $(0, \infty)$, it is also a global/absolute maximum. Consequently, the largest possible volume of the box is

$$V(20) = 400 \cdot \frac{1200 - 400}{80} \text{cm}^3 = 4000 \text{cm}^3.$$